Script Manager Training Module

Script Manager

Revision History

Version

Date

Revision Description

0.1

10/12/2014

Initial draft

Script Manager

AV Y [0 I o 1151 o] /PR STU P PPRT PP i

Lo INrOdUCHION ... 3
L1 PUIPOSE o 3
1.2. MOAUIE PIrE-TEOUISITES.eiiiiieiieeiie et 3
1.3. EXPECTALIONS ...t 3
1.4. (000101771 01 1 0] o ST TT R 3
1.5. 1Y [oT0 U1 (<0 F=1 - TR 3
1.6. Links t0 additioNal FESOUICESuuuiiiiiiiiiiiir e bbb bbb s sssssssssassssssrsees 4
1.7. Problem Reporting INSTIUCTIONSooviiiiiiieiiciece e 4
R 1= 110] 1 5
2.1. L] 1] = | 6
1100 (1 o] 6
Y T W o | USSP TR TR 6
What are the uses Of SCrpPES IN the DSS? ...t 6
What is the 'Iron Python' SCripting [aNQUAGE?coueiiiuiiiie ettt be e 7
REVIEW QUESTIONSutieie ittt e ittt e sttt e e st e e e s et e e e e ab e e e e satee e e s eabaeeesatbeeesaabaeeesasteeaesnsaeeesanbeeeessseeeessnrenaenans 7
2.2. IrONPYENON PIIMEE L.ttt b et 9
1100 (1 o] o 9
T o o =R €T [V L= S PR 9
0] 0SSP PPRURPUPRPIN 9
(€= L] Lol T | oSO R P RPOURI 9
)1 G TP O TP U PP PP PUPRO 10
(D2 £ 1Y L T T OO PP PUPPRTPPP 11
YT L TSP 12
FIow CONtrol STAtEMENES........ooeieeeeeeee e 12
FUNCLIONS .o 13
(O FIY TR OTTRTRTRTRSRTT 14
(=l o[o] PRSP RPUUPR 16

[gT 1o 13T [TSP 16
[T (=T 1O TR 17
YT ESor=] | F= T T=To L 17
AV LT A O TN L= o] SRR 19

F N T £ TR 20
2.3. SCHIPE MANAGEE DASICS ...ttt ettt et et e e st e e sneeeanteeeeneeeaneeeens 21
L1 00 (1 o] o 21
LLESSON PIE-TEUUISIEES ...ttt ettt ettt ettt ettt ettt ettt ettt bt b e e et e ab e e ettt e ke e e ebe e e ebb e e e mbe e e be e e nbe e e sbaeesnbeenabeean 21
The DSS Script Manager COMPONENTS.ciutaiieiiteee it atieeateeasteeasteeessbeessbeesabeeesteeessbeaasbeesbeesabeeesseeasnbeaans 21
HOoW SCripts are Stored iNTthe DSS ...ttt ettt sbe e stee e neee s 23
SCHIPLEYPES TN TNE DSSottt bbb e bt e s b bt e shb e e s h b e e e et b e e ebbeesabeesnbeesnbeeentes 24
EXBICISES ..o 25
AV LT A O TN L= o] SRR 26

F N T £ TR 27

F N T £ TR 27
2.4, Creating SIMPIE SCIIPTS ..o 28

Script Manager

Lo o L1 o1 o] o DO OO PP T PP OP SR PRPRPPT 28
LLESSON PrE-TEUUISIEES ...ttt teee ettt ettt ettt sttt ettt sttt b et b et e et et e e bt e ekt e e ebe e e ebe e e e mbe e e ke e e sbe e e sbeeennbeesabeean 28
Yo T o] (=1 | TS UPUOP RPN 28
Yo T o] (=] LU o o[0T R OSSPV 29
T (o L T PO TSPV P PP PP PR 30
AV LT A O TN L= o] SRR 36
AANSWVETS ...ttt h bR E R R R e R e R E e Rt st e et r e 37
2.5. Handling changes and MEtAdata............coviiiiiiieiiiiiieee e 38
Ly igo o[V o1 o] o BT O O TSSO TP OT SR PRPRPRT 38
LLESSON PrE-TEUUISIEES ... teeeteee ittt ettt ettt sttt ettt e bttt ekt e s e bt e e s bt e e bt e e ke e e ebe e e ebb e e e mbe e e ke e e nbe e e sbeeesnbeesabeean 38
Script storage changes and METAALAceiriiiiiiie bbb sb e b e e sab e see e neee 38
T (o T T T TSPV P PP PP PR 42
AV LT A O TN T 4 o] RSP 44
AANSWVETS ...ttt h e h bR R R R R e R n R e s e et n e 45
2.6. Creating COMPIEX SCHIPEScoriiiieiieeie ettt 46
Lo o L1 o1 o] o BT O O TSP PP OPST PR PR 46
LLESSON PrE-TEUUISIEES ... veeeteee ettt ettt ettt ettt ettt ettt ettt e b e e h bt e e s bt e e bt e e ket e ebe e e ebb e e e mbe e e be e e nbe e e nbaeesnbeenabeean 46
STo T oL o D0 gT=T 0L USSPV ROTRN 46
T (o T T T TSPV P PP PP PR 47
AV LT A O TN T o] SRR 53
AANSWVETS ...ttt h bt h bR R R R e Rt R e s e 54
2.7. Predefined SCriPLS iN The DSS........coiiiiiii e 55
Lo o L1 o1 o] o DO OO PP T PP OP SR PRPRPPT 55
LLESSON PIE-TEUUISIEES ...ttt ittt ettt ettt ettt ettt ettt b et b et e et e st e e e bt e ekt e e ebe e e ebb e e e mbe e e be e e nbe e e sbeeesnbeenabeean 55
Who developed this set of predefined INAICALOrS.ooeiiiiiiiie e 55
SCHIPES DETINITION ...ttt bttt b e e bt e et e et e e et e e e sbee e sbbe e snbeesnbee et 58
Expanding the DSS Predefined SCrIPLS.uoitiiiiiiiiii ettt ettt bbb be e s sneeas 63
AV LT A O TN L= o] SRR 63
AANSWVETS ...ttt h bt bR R R R e R e R e aR e s e ettt 64
2.8, ACVANCEA SCIIPTING ... ittt ne s 65
Lo o L1 o1 o] o BT O O TSP PP OPST PR PR 65
LLESSON PIE-TEUUISIEES ...ttt ettt ettt ettt ettt ettt ettt ettt bt b e e et e ab e e ettt e ke e e ebe e e ebb e e e mbe e e be e e nbe e e sbaeesnbeenabeean 65
What is an Application Programming INterface (API)?.........oo it 65
WHEL IS The DSS (API) 2.ttt bbbt b bt bt s e bt s bt bt e bt b e bt et ek esbesbeene e b e 65
o (o = RSO UOSU PRSPPIt 6766
REVIEW QUESTIONStieie it i ettt ettt e e ettt e e e st e e e s tb e e e e satee e e s estae e e satbeeessabeeeeassteeeesasbaeeesnseeeesasreeeaanns 7140
ANSWELS ... 7274

K (-] < o= 3OS 1342

Page 2

Script Manager

1. Introduction

This document is part of training modules for the Nile Basin Decision Support System
(DSS). These modules are developed for use in classroom training that is given to Nile
Basin countries and as a self-learning training material that will be made available as

part of the DSS helpdesk and knowledgebase.

1.1. Purpose

The purpose of this document is to provide a tutorial on the DSS Script Manager. The

tutorial starts with the basics and progressively increases in complexity.

1.2. Module pre-requisites

The following prerequisites are needed before taking this tutorial:

Software prerequisites: The Mike by DHI version 2014 and the DSS version 2.0 have to

be installed.

User prerequisites: User is expected to be familiar with the DSS User Interface basics.

1.3. Expectations

Upon successful completion of the lessons, exercises and review questions in this

document, you will be familiar with most of the Script Manager functionalities.

1.4. Conventions

The following conventions are followed in this document:

means a tip for the user

@
means important information

1.5. Module data

Files that are needed for this module are located at the ..\ScriptsExp\data folder.

Page 3

Script Manager

1.6. Links to additional resources

In addition to the information presented in this module, below are links to additional
resources that you can access to obtain further information on the following:
e Script Manager:
= The DSS help file accessible by clicking on the button
e [ron Python scripting language:
= http://ironpython.net/

1.7. Problem Reporting Instructions

This document will be updated regularly. Therefore, it is highly recommended to report

any spotted problem to helpdesk@nilebasin.org so it can be corrected in future versions.

When reporting the problem, you are kindly requested to provide the following:
e Document title
e Document version
e Page number where the problem was spotted

e A description of the problem

Page 4

Script Manager

2. Lessons

In this section the following lessons (with exercises) are included:

General: This lesson introduces you to script definition in general and within the
DSS, uses of scripts in the DSS. It then gives an overview of the 'lron Python' the
scripting language used in the DSS.

Iron Python primer: This lesson gives a basic explanation of language
components and their syntax.

Script Manager basics: This lesson introduces you to the Script Manager
components, how scripts are stored in the DSS, DSS script types and to some
basic tasks such as activating the manager.

Creating simple scripts: This lesson shows you how you can create, debug and
save a simple script in the DSS.

Handling changes and metadata: This lesson introduces you to the change log
and metadata sections of each script. It also shows how they can be used.
Creating complex scripts: This lesson shows you how you can create, debug and
save a complex script in the DSS.

Predefined scripts: This lesson gives an overview of the DSS predefined scripts.
It also shows you how you can expand the predefined indicators

Advanced scripting: This lesson introduces you to two advanced scripting topics,
namely, using the DSS Application Programming Interface in scripts (including
accessing DSS objects such as time series, GIS layers, scenarios and

spreadsheets) and using DSS tools in a script.

After completing the lessons and exercises in this section you will be able to use

the Scripts Manager to manage scripts within the DSS.

Page 5

Script Manager

2.1. General
Introduction

This lesson introduces you to scripting in general and within the DSS, and to uses
of scripts in the DSS. It then gives an overview of the 'lron Python', the scripting
language used in the DSS. If you are familiar with those definitions and concepts

you can skip this and move to the next lesson.

Topics covered in this lesson:
e What is a script? And what are its uses in the DSS?

e an overview of the 'lron Python' the scripting language

Lesson objectives:
After completing this lesson, you will be familiar with the following:

e Script- concepts and uses in the DSS.

e The 'lron Python' scripting language.
What is a script?

A script is a series of instructions that are written using a scripting language to
typically automate repetitive tasks. These instructions are interpreted or carried out
by another program (interpreter) rather than directly by the computer processor (as
a compiled program is). To give an example, The DSS is a compiled program which
runs directly by the computer processor. If you write a script within the DSS, you
don't need to compile it and run separately. It can run within the DSS which will
interpret it line by line. In this case the script instructions are passed to the computer

processor via the DSS (i.e. the interpreter is part of the compiled DSS.
What are the uses of Scripts in the DSS?

In the DSS, scripts can be used to for the following various reasons:

e Automate repetitive tasks. Imagine you have daily task of checking daily
rainfall data records of a humber of catchment gauges. To do this, you can
write a script to import and check this data using the DSS tools.

e Calculate the value of an indicator. For example, if you want to calculate the

evaporation losses from a reservoir, you can write a script that processes

Page 6

Script Manager

the evaporation time series of this reservoir (i.e. using the reservoir model
results) and then calculates the total evaporation losses from this reservoir.
e Create customized functionality in the DSS such as creating other Managers

Tools, or model Adapters.
What is the 'lIron Python' scripting language?

Iron Python is the scripting language of the DSS. It is an open-source
implementation of the Python programming language?. Iron Python is integrated
within the Microsoft .NET Framework and can use both the .NET Framework and
Python libraries. Other .NET languages can also use Iron Python code. It is
considered as an excellent addition to the .NET Framework, providing Python
developers with the power of the .NET framework. Existing .NET developers can
also use Iron Python as a fast and expressive scripting language for embedding,
testing, or writing new applications. For more details about the language see the

IronPython primer section

Review Questions

1. Whatis a script?
2. What are the uses of scripts in the DSS?

! See more details at http://python.org/

Page 7

Script Manager

Answers

1. A script is a series of instructions that are written using a scripting language
to typically automate repetitive tasks.
2. Inthe DSS, scripts can be used to for the following various reasons:
e Automate repetitive tasks.
e Calculate the value of an indicator.
e Create customized functionality in the DSS such as creating other

Managers Tools, or model Adapters.

Page 8

Script Manager

2.2. IronPython primer
Introduction

This primer will attempt to teach you Python2. It will just show you some basic
concepts to start you off. It assumes that you are already familiar with programming
and will, therefore, skip most of the non-language-specific material. The important
keywords will be highlighted so you can easily spot them. Also, pay attention
because, due to the nature of this tutorial, some things will be introduced directly in
code and only briefly commented on. This primer also assumes that you have

already installed Python on your computer.

Lesson objectives:
By the end of this lesson, it is anticipated that you will be familiar with the Iron

Python language components and their syntax.
Lesson pre-requisites

You have to be familiar with the programming basics to take this lesson.
Properties

Python is strongly typed (i.e. types are enforced), dynamically, implicitly typed (i.e.
you don't have to declare variables), case sensitive (i.e. var and VAR are two
different variables) and object-oriented (i.e. everything is an object) scripting

language.
Getting help

Help in Python is always available right in the interpreter. If you want to know how
an object works, all you have to do is call .Also useful
are dir(), which shows you all the object's methods,

and , which shows you its documentation string:
help(5)

Help on int object:

2 Python and Iron Python are very similar but not identical

Page 9

Script Manager

(etc etc)

dir(5)
[_abs_ ", " _add -,

abs. doc_
"abs(number) -> number

Return the absolute value of the argument
Syntax

Python hasno mandatory statement termination characters and blocks are
specified by indentation. Indent to begin a block, dedent to end one. Statements
that expect an indentation level end in a colon (). Comments start with the pound
(#) sign and are single-line, multi-line strings are wused for multi-line
comments. Values are assigned (in fact, objects are bound to names) with the
equals sign ("="), and equality testing is done using two _equals_ signs ("==").
You can increment/decrement values using the += and -= operators respectively by
the right-hand amount. This works on many datatypes, strings included. You can

also use multiple variables on one line. For example:

myvar
myvar
myvar

myvar
myvar
4
"""This is a multiline comment.
The following lines concatenate the two strings.
mystring "Hello™
mystring " world."
print mystring
Hello world
This swaps the variables in one line(!).
1t doesn™"t violate strong typing because values aren"t
actually being assigned, but new objects are bound to
the old names.

myvar, mystring mystring, myvar

Page 10

Script Manager

Data sturctures

The data structures available in python are lists, tuples and dictionaries. Sets are
available in the library (but are built-in in Python 2.5 and later). Lists are like one-
dimensional arrays (but you can also have lists of other lists), dictionaries are
associative arrays (a.k.a. hash or look-up tables) and tuples are immutable one-
dimensional arrays (Python "arrays" can be of any type, so you can mix e.g. integers,
strings, etc in lists/dictionaries/tuples). The index of the first item in all array types is 0.
Negative numbers count from the end towards the beginning, -1 is the last item.
Variables can point to functions. Note that lists use square brackets [], tuples use

parentheses () while dictionaries use braces { }. The usage is as follows:

sample [1, [Tanother™, "list"], ("a'", "tuple™)]

mylist ["List item 1, 2, 3.14]

mylist[O] "List item 1 again™ # We"re changing the i1tem.
mylist[-1] 3.21 # Here, we refer to the last item.
mydict = {"Key 1": "Value 1", 2: 3, "pi": 3.14}

mydict["pi™] 3.15 # This is how you change dictionary
values.

mytuple a, 2, 3)

myfunction len

print myfunction(mylist)

You can access array ranges using a colon (:). Leaving the start index empty assumes
the first item, leaving the end index assumes the last item. Negative indexes

count from the last item backwards (thus -1 is the last item) like so:

mylist ["List item 1, 2, 3.14]
print mylist[:]

[List item 1%, 2, 3.1400000000000001]
print mylist[0:2]

[FList item 17, 2]

print mylist[-3:-1]
[FList item 17, 2]

print mylist[1:]
[2, 3-14]

Page 11

Script Manager

Adding a third parameter, ''step”™ will have Python step in
N 1tem increments, rather than 1.
E.g., this will return the first i1tem, then go to the third

and

return that (so, items 0 and 2 in O-indexing).
print mylist[::2]

[FList item 17, 3.14]

Strings

Strings can use either single or double quotation marks, and you can have quotation

marks of one kind inside a string that uses the other kind (i.e. "He said 'hello"." is valid).

Multiline strings are enclosed in triple double (or single) quotes (""). Python supports

Unicode out of the box, using the syntax u"This is a unicode string". To fill a string with
values, you use the % (modulo) operator and a tuple. Each %s gets replaced with an

item from the tuple, left to right, and you can also use dictionary substitutions, like so:

print "Name: %s\
Number: %s\
String: %s" (myclass . name, 3, 3 =)
Name: Poromenos
Number: 3
String:

strString """ This is
a multiline
String . LARAAA]

WARNING: Watch out for the trailing s in "%(key)s".
print "This %(verb)s a %(nhoun)s.™ {"noun™: "test",

"verb™: "is"}

This a test

Flow control statements

Flow control statements are , , and . There is no ; instead,
use if. Use enumerate through members of a list. To obtain a list of numbers,
use . These statements' syntax is thus:

rangelist range(10)

Page 12

Script Manager

print rangelist

1, 2, 3, 4, 5, 6, 7, 8, 9]

number rangelist:

Check 1f number is one of

the numbers i1n the tuple.

if number @G, 4, 7, 9):
"Break'" terminates a for without
executing the "else" clause.
break

else:
"Continue' starts the next iteration
of the loop. It"s rather useless here,
as 1t"s the last statement of the loop.
continue

else:

The "else'" clause i1s optional and is

executed only if the loop didn"t "break'.

pass # Do nothing

if rangelist[1] 2:

print "The second item (lists are O-based) is 2"
elif rangelist[1] 3:

print "The second item (lists are O-based) i1s 3"
else:

print "Dunno™

whille rangelist[1]
pass

Functions

Functions are declared with the "def" keyword. Optional arguments are set in the
function declaration after the mandatory arguments by being assigned a default value.
For named arguments, the name of the argument is assigned a value. Functions can
return a tuple (and using tuple unpacking you can effectively return multiple

values). Lambda functions are ad hoc functions that are comprised of a single
statement. Parameters are passed by reference, but immutable types (tuples, ints,
strings, etc) *cannot be changed*. This is because only the memory location of the item
is passed, and binding another object to a variable discards the old one, so immutable

types are replaced. For example:

Page 13

Script Manager

Same as def funcvar(x): return x + 1
funcvar lambda x: x 1

print funcvar(l)
2

an_int and a _string are optional, they have default values
1Ff one 1s not passed (2 and "A default string",
respectively).
def passing _example(a_list, an_int=2, a_string="A default
string™):

a_list append("A new item'™)

an_int 4
return a_list, an_int, a _string

my list [1, 2, 3]
my_int 10
print passing_example(my_list, my_int)
(1, 2, 3, "A new item"], 4, "A default string")
my_ list
[1, 2, 3, "A new item"]
my_int

10
Classes

Python supports a limited form of multiple inheritance in classes. Private variables and
methods can be declared (by convention, this is not enforced by the language) by
adding at least two leading underscores and at most one trailing one (e.g. "__spam").

We can also bind arbitrary names to class instances. An example follows:

class MyClass(object):
common 10
def __init__ (self):
self_myvariable 3
def myfunction(self, argl, arg2):
return self _myvariable

This is the class iInstantiation
classinstance MyClass()
classinstance myfunction(l, 2)

3
This variable is shared by all classes.

Page 14

Script Manager

classinstance2 MyClass()
classinstance.common

classinstance2.common

10

Note how we use the class name

1nstead of the i1nstance.
MyClass.common 30
classinstance.common

classinstance2.common
30
This will not update the variable on the class,
instead i1t will bind a new object to the old
variable name.
classinstance.common 10
classinstance.common

classinstance2.common
30
MyClass.common 50
This has not changed, because '‘common® 1is
now an i1nstance variable.
classinstance.common
10
classinstance2.common
50

This class i1nherits from MyClass. The example
class above i1nherits from "object"™, which makes
1t what"s called a "new-style class".
Multiple inheritance i1s declared as:
class OtherClass(MyClassl, MyClass2, MyClassN)
class OtherClass(MyClass):
The "self" argument i1s passed automatically
and refers to the class instance, so you can set
1Instance variables as above, but from inside the class.
def _init_ (self, argl):
self_myvariable 3
print argl

classinstance OtherClass('hello™)
hello

Script Manager

classinstance _myfunction(l, 2)

3

This class doesn"t have a .test member, but

we can add one to the instance anyway. Note

that this will only be a member of classinstance.
classinstance.test 10
classinstance.test

10

Exceptions

Exceptions in Python are handled with try-except [exceptionname] blocks:

def some_function():

try:
Division by zero raises an exception
10 7 O

except ZeroDivisionError:
print "Oops, invalid.”

else:
Exception didn"t occur, we"re good.
pass

finally:
This i1s executed after the code block is run
and all exceptions have been handled, even
1T a new exception is raised while handling.
print "We"re done with that.”

some_function()
Oops, invalid
We"re done with that.

Importing
External libraries are used with the keyword. You can also
use for individual functions.

Here is an example:

random
time clock

randomint random.randint(l, 100)
print randomint

Page 16

Script Manager

File 170

Python has a wide array of libraries built in. As an example, here is
how serializing (converting data structures to strings using the library) with

file 1/0 is used:

pickle
mylist ["This™, "is"™, 4, 13327]
Open the file C:\\binary.dat for writing. The letter r
before the
Tilename string is used to prevent backslash escaping.
myfile open(r”C:\\binary.dat™, "w')
pickle_ dump(mylist, myfile)
myfile_close()

myfile open(rC:\\text.txt"™, "w'"™)
myfile write(""This is a sample string™)
myfile_close()

myfile open(rC:\\text.txt"™)
print myfile read()

"This is a sample string”

myfile_close()

Open the file for reading.
myfile open(r”C:\\binary.dat™")
loadedlist = pickle. load(myfile)
myfile_close()

print loadedlist
[FThis®, "is", 4, 13327]

Miscellaneous

e Conditions can be chained. checks that a is both less than 3 and
greater than 1.

e You can use to delete variables or items in arrays.

e List comprehensions provide a powerful way to create and manipulate lists. They
consist of an expression followed by a clause followed by zero or

more or clauses, like so:

Page 17

Script Manager

Istl [1, 2, 3]
Ist2 [3, 4, 5]
print [x * y for x Istl for y Ist2]
[3, 4, 5, 6, 8, 10, 9, 12, 15]
print [x for x Istl if 4 > X 1]
[2, 3]
Check 1f a condition is true for any i1tems.
"any" returns true If any item in the list i1s true.
any([1i 3 for i [3, 3, 4, 4, 31D
True
This 1s because 4 % 3 = 1, and 1 1s true, so any(Q)
returns True.

Check for how many i1tems a condition i1s true.
sum(1l for i [3, 3, 4, 4, 3] if i 4)
2
del Istl[0]
print Istl
[2, 3]
del Istl

1. Global variables are declared outside of functions and can be read without any

special declarations, but if you want to write to them you must declare them at
the beginning of the function with the "global" keyword, otherwise Python will
bind that object to a new local variable (be careful of that, it's a small catch that

can get you if you don't know it). For example:
number 5

def myfunc():
This will print 5.
print number

def anotherfunc():
This raises an exception because the variable has not
been bound before printing. Python knows that it an

object will be bound to i1t later and creates a new,
local

object i1nstead of accessing the global one.

print number

number 3

def yetanotherfunc():
global number

Page 18

Script Manager

This will correctly change the global.

number 3
Review Questions

1. What is the differences between a list, a dictionary and a tuple?
2. Does Python have a “select” statement?
3.

Page 19

Script Manager

Answers

Page 20

Script Manager

2.3. Script Manager basics
Introduction

This lesson introduces you to the Script Manager basics.

Topics covered in this lesson:
e Script Manager components

e How scripts are stored in the DSS
e DSS script types

e Basic tasks such as activating the manager

Lesson objectives:
By the end of this lesson, it is anticipated that you will be familiar with the Script

Manager basics.
Lesson pre-requisites

You have to be familiar with the DSS User Interface basics to take this lesson.
The DSS Script Manager components

Figure 1Figure-2 shows the components of the DSS Script Manager, namely:

1. The Scripts Explorer: where scripts are organized in user defined groups and
subgroups or by storage (i.e. files).

2. The scripts view: where scripts are created, modified, debugged for errors and
saved.

3. Tools Explorer: in this case it is used only to export and import scripts
definitions. Since it is not used much for scripts it is not further described in this
module.

4. The Properties window: where the selected script data is displayed.

Page 21

Script Manager

Connection View

Settings

Scripts

E|'-E Database (by Group)
Economic Indicators
Environmental Indicators
= Mjscellaneous

£ _TestDuration
- _TestTraverse
= %‘ CreateAllDamageRasters
¢ CreateDamagePctRaster
¢ CreateDamageUsDRaster
¢ CreateEnergyRaster
¢ CreateValuelSDRaster
¢ GetUniversalSchema
¢ PopulatePilotCaseMeta
¢ ReturnFloatZero
¢ ReturnIntZero

5 est_LogOutput

[+ Optimization
[+ Social Indicators

2 x|l # Start Page [E%‘ BaseUtils w 4 1 x| Properties ofx
(31 | P Testlogoupet O K EE IR % % Script - Test_LogOutput .
: A
= 2l | =
= End time -
b Exception 4 o
def Test LogOutput(tsl, ts2): M Properties window F
wer e = e b
= Retum value
e Start time
<Author>HB</Author> Status
<Description>Please enter script description here</Description> 4 Location .
</Script> = Storage BaseLtils T
nnn 4 Script
LogOutput | [Author HB
[MScriptliame’ ; 'V Vv vy H Description Please enter script description here
[tsl.Name, ' n = ', str(tsi.Count), ' avg. = ', str(tsil.Statistics.Average Last modified 6/20/2014 3:02 PM | 4
[ts2.Name, ' n = ', str{ts2.Count), ' avg. = ', str(ts2.Statistics.Average| | Hame Test_LogOutput -
n Start time
pass, Time when last execution of script started.

W

def RefreshTSList():

: Tools Explorer onx
force refresh of timeseries list
s . T e - - [earch toolbox
Scripts explorer tmgr = app.Modules.Get('Time series Manager')
q = Query () ScriptProperties Tools -
air= QuaryEl mtl) e 1l Stored Sequence
gi.Name = 'Name'
gi.Operator = QueryOperator.Like Scripts view Other Tools &
gi.vValue = "#=* - Datatook |
q.Add (gi) % Change-log query Tools explorer E
tmgr.TimeSeriesList.Query (q) % Data Export Toal
F % Datalmport Tool
- * Event-log query
-|def RefreshTSValunes (tsList):
i 3 . -\, Feature Class Query Tool =
force refresh of timeseries values
-\, Metadata Schema Import
for ts in tsList: % RES.tEFQUEFyTﬂﬂl
2 0 = mervil - * Script Execute Toal
Il 1] + -\, Script Query Tool £t

admin | Connected to: TestTrainingDB

Status: Ready

Figure 1: Script Manager components

Page 22

Script Manager

How scripts are stored in the DSS

When a new database is created, the Scripts Explorer window has only one main group
which is the Database as shown in Figure 2Fgure-3. Next to the 'Database’ node, you
can see that between parentheses 'by Group' is written.

 Scripts oRx

------ .-g Database (by Group)

Figure 2: Scripts explorer for newly created databases (showing database by group)

Right click the database and select view by 'Storage' as shown in Figure 3.

Ko Of x| | Start
...... | =] Database by View by 1 Group
Refresh F5 | storage

Add storage

Figure 3

Now the text next to the 'Database’ node changes to 'by Storage' as shown in Figure 4.

Scripts oo x

------ .-g Cratabase (by Storage]

Figure 4: Scripts explorer for newly created databases (showing database by storage)

Therefore as you probably expected, Scripts can be viewed either by group or storage.
Viewing by group is similar to arranging scripts in folders to easily access them (similar
to other DSS obijects in other explorers). So what is viewing by storage? A storage is
equivalent to a file. In the DSS, a storage contains one or more scripts and functions
coded in IronPython. Before you can add scripts to the DSS, you need first to add a new

Page 23

Script Manager

storage. This is done by first viewing the scripts in 'by Storage' view, then right click the

'‘Database’ node and select 'Add storage' as shown in Figure 5.

Refrezh F5

Add storage

Figure 5: Adding a storage to the database

This adds a storage as shown in Figure 6.

: Scripts

Elﬁ Database

BE-J Mewstoragel

Figure 6: New storage is added to the database
Script types in the DSS

The scripts in the DSS have the following two types:

e Scripts with no arguments (i.e. simple scripts) which does not need arguments
(i.e. data) to be passed to it before running. So it is a self-contained script that
has all the data and code that are needed to run.

e Scripts with arguments (i.e. complex scripts) which does need arguments (i.e.
data) to be passed to it before running. So it is a self-contained in terms of code
but not data.

In addition, there are functions, which can only be called internally by other functions

of scripts but are hidden when indicators are defined. Scripts are differentiated from

functions by the header which is only required for scripts. For scripts to be used to
calculate indicators, they have to return a single numeric output.

Page 24

Script Manager

Exercises

Activating the script Manager

1- In the DSS, click on View Menu, click Jﬁ ;

rE}(pl crer Cenfiguration
“Explorers...” and the Explorer

. . . Explorers
Configuration box appears. Tick the box] (Select al)
next to 'Scripts’ explorer. [T] (Defautt selection)
[] Analysis

[7] Dashboard objects

[[] Dashboards

[] Favarites

[] Gis

[Indicators :
[[] Scenarios
b
[7] Spreadshest

[7] System

[] Time seres

[] Tools explorer

] (Hide all)

'Scripts' explorer should appear within the ‘ Scripts

DSS window. The explorer hasaroot | | - =1 Database (by Group)|
node 'Database’.

Adding a new 'user defined' group

1- In the 'scripts' explorer, ensure that the

_.¢ Group
Storage

scripts are shown by group as show next.

Refresh F5

Add new group

List running scripts Ctrl+L

I

Page 25

Script Manager

2- Right click on the 'Database’ group,

click on the | Add new group | option.

A new group is added as shown next.

View by 3
Paste Ctrl+V
Refresh Fa

Add new group

List running scripts Ctrl+L

3- Select the new group and either right
click with the mouse and select
or press the keyboard function Key 'F2' to

rename it.

4- Enter a suitable name (e.g. My

Scripts).

: Scripts
-
Elﬁ Database (by Group)
=
: Scripts 7
B.'-E Database (by Group)
B LT Ctrl+X
Delete Del
Paste Ctri+V
Refresh F5
:
Add new group
List running scripts Ctrl+L
: Scripts
-
Elﬁ Dratabase (by Group)
o

Review Questions

1. List the components of the Script Manager.

2. Scripts can be viewed by group or storage in the DSS - explain the

difference.
e True

e False

Page 26

Script Manager

Answers

Indicator Manager components are:

e The Scripts Explorer
e The scripts view
e Tools Explorer window.

e The Properties window.

True. Storages are similar to files which can contain several scripts and/or

functions while groups are a visual grouping of scripts (only) in a tree like

structure.

Page 27

Script Manager

2.4. Creating simple scripts
Introduction
This lesson shows you how you can add a new simple script.

Topics covered in this lesson:
- Create a simple script

- Debug a simple script

- Save a simple script

Lesson objectives:
By the end of this lesson, it is anticipated that you will be familiar with the process of

creating simple scripts in the DSS.
Lesson pre-requisites

You have to be familiar with scripts' basics and Iron Python (See the scripts' basics
and the IronPython primer sections for details) to take this lesson.

Script details

To make a script known to the DSS (i.e. its name appears within the explorer when
view by group), it must have a header defining its author, and description for simple
scripts and input (if with arguments) and output (if it returns a value) for complex

scripts. The header for a simple script is shown in Figure 7.

—|def ScriptHame () :

e

<Script> Script header
<Authorradmin</Authors>

<Description>Please enter =script description here</Description’>
</Script>

e

¥ write vour code here

Figure 7: Script header

Page 28

Script Manager

Scripts that are added without such headers, they become only local to the storage
where they are saved and cannot be called directly from the DSS explorer. Scripts

within one storage can call each other even if they have no headers.
Script debugging

Script debugging can be helpful in understanding the execution of scripts as you
can run the script line by line and/or stop execution at selected locations
(breakpoints). This can also help to identify code flaws and errors. The DSS has got

its own script debugger which allows you to debug a script code.

Page 29

Script Manager

Exercises

Adding, saving and running a simple script

1- Restore the 'TrainingDB' database
located in the folder
.\ScriptsExp\Data\Database. Then create
a connection and login to the restored
database (For details see the Database
Manager Utility and System Manager
training module). Following that, activate
and view the scripts explorer 'by storage’
and a new storage as shown in the

Activating the script Manager and How

scripts are stored in the DSS sections.

b ScriptsExp » Data » Database

Mame

i II_.. TrainingDB.backup

2- In the restored database, you will notice
that there are already created storages in
addition to the newly created storages that
is called 'NewStoragel'.

: Scripts

EI.-E Database

= Optimization
IndicatorUtils

MEIScripts
Sociallndicators
Environmentallndicators
Econamicdndicators
Spreadsheetltils

PetaCustomScripts

R AR R AR AR AR AR R AR AR

MetaxsD
Baselltils
fetalltils
RasterlUtils
2- Right click the newly created storage gz
and select rename to rename to 'My % Database
[2ts,
Storage'. i;-. Delete Del
B
iix %o Edit storage Enter
i%‘ Environmentallndicators
il
3- If the storage is not already opened in R 1z
])) o Delete Dl
the scripts view, right click it and select
Rename F2

'Edit storage'.

Edit storage | Enter

Page 30

Script Manager

4- In the script view, right-click and select 'Insert' then 'Script without arguments' (Note

that you can alternatively do this by clicking @the button on the toolbar).

1
Insert » IScﬁptuﬂthDutargurﬂEﬂts
_ i
Insert snippet... Ctrl+] Script with arguments
Undo Tool wrapper...
Becln L

This will insert template code (see below) for a simple script including a header. The
script does nothing.

—|def ScriptWHame () :

LURInd

<Script>

<huthorradmin<,/Author>

«Description>Flease enter sScript description here</Descriptions>
</Script>

merrm

write your code here

= pass;

==

5- Rename the script and then modify it to simply write the word “Hello” to the console.
to do this:
1- change the function name from 'ScriptName' to '‘MyFirstScript’
2- change the line:
pass;
to
print 'Hello';
Script should look like the window below

def MyFirstScript():
FErre
<Script>
<Bhuthor>admin</Author>
«Description>Please enter script description here</Description>
</Script>

FrEr T

$# write vour code here

print "Hello';

Page 31

Script Manager

6- Save the storage by clicking the on | [EEETATEE

Removed scripts Added scripts

the toolbar. A confirmation window] Mybsicipt M
appears, showing what scripts are added
and which are removed (if any). Obviously
in this case only one script is added and
nothing was removed. Click 'Save' to

confirm. This will create the 'MyFirstScript'

Save | Cancel

as something the DSS knows (How can
you check that? Hint: Change the view to

'‘by Group").

Start Page |l5¢ Mystorage |

SELEIC JosEE

7- Now it is time to run the script. In the

toolbar, there is an arrow followed by a list
—|def MyFirstScript():

e

box as shown next.

<Script>

The list box allows you to select the script
that you need to run and the E] button

allows you to run this script.

So select the 'MyFirstScript' in the box and
then click the E] button.

8- The script debugger windows appears and the 'Hello' word appears in the 'Output

window' as shown below.

The script debugger has got the code in the top pane and the script output in the lower
output pane. The lower pane has also two other tabs that are called 'Watch' and Call
stack'. The 'Watch' windows allows you to watch the value of the script variables when
running in step by step or using break points. The 'Call stack’ windows allows you to see
the current execution point of the the script and a list of functions and scripts called at

the point of execution.

Page 32

Script Manager

M Il B sz
MyStorage

Fldef MyFirstScript(): |

| mwen

[;E Gz G & MyStorage adl

B

[

<Script>

<huthorradmin</Author>

<Description>Please enter script description here</Description»
</fScript>

wem

-1 o n b

g # write vour code here
= print 'Hello';

m

7t : AIF i 3

Output | Call Stack | Watch

Hella -

Finiched

Page 33

Script Manager

Debugging a simple script

1- To debug a script code, you need to
establish stop location (i.e. breakpoints).
You can do this by either:

- Clicking the left border of the script view.
This makes a breakpoint at this line
which will stop execution here.

- Moving the cursor to a code line 10 and
pressing F9. This will also establish a

breakpoint.

stert Page |[Z MyStorage |
i3] 3 EH P MyFirstScript

PSR

AB
AL

[—|def MyFirstScript():

H e

<Script>
<Authorradmin</Authors>
<Description>FPlease enter
<{Script>

FEEF Y

write your code here

print '

IE L peine meno

Breakpoint

them during execution respectively.

Breakpoints can be removed/toggled in the same way they were created. The
buttons in the toolbar allows you to delete all breakpoints or disable

——————————————————————————————

2- Run the script as done in the previous
exercise. Now the script debuger appears
but it stops at the breakpoint line as
indicated by the yellow color shown next.

MyStorage

—ldef MyFirstScript():

O FEFE Y
<Script>
<Authorradmin</Authors>
<Description>Please en
</ Scriptc>
FEFr e
write your code here

print

B AL AL

3- Now look at the 'Output’ window of the

debugger. What do you notice?

P
Output | Call Stack | Watch |

4- Move the the 'Call Stack' window of the
debugger. It shows the current execution
point which is line 10 in '‘MyFirstScript' in

storage 'MyStorage'. Does that explain

why the 'Output’ window of the debugger

4 | i

| Output | Call Stack |Watch|

| Module Function LineMNumber

>

Page 34

Script Manager

IS empty.

5- Go back to the 'Output’ tab and click
the [M

button twice on the debugger

4|

| Output | Cal Stack | Waich|

toolbar to contniue running the script. Now Hell
the output window shows the word 'Hello’
Identifying script errors
. . . ool IpC IO IcaoYs ey
1- In 'MyFirstScript', change the line: </Script>

print 'Hello'
To
rint 'Hello'

then try to save or run the script. What do

you notice?

e

2- An error message appears warning you
that the storage cannot be save as there
are some syntax errors. It also shows you
in which line and column the error is. Click
Ok.

I.-""_' ‘.I MyStorage can't be saved. It contains syntax errors.
‘S - invalid syntax, line 10 column 10

3- Note also the red exclamation mark
that is added to the toolbar.

Hover the mouse over it and the error

message appears.

L5 B B|0R | % %

PuEEOR % %

[invalid syntax, line 10 column 10 }

4- Correct the error by changing the line:

rint 'Hello'
To
print 'Hello'

Save the script.
Note that the red exclamation mark

disappeared.

Page 35

Script Manager

Review Questions

1- What are the details that are needed for a complex script to be known to the
DSS?

2- Script debugging cannot be done within the DSS.
. True

. False

Page 36

Script Manager

Answers

1- To make a complex script known to the DSS, it must have a header defining its
author, and description, input and output (if it returns a value).
2- False.

Page 37

Script Manager

2.5. Handling changes and metadata
Introduction

This lesson introduces you to the handling of script changes and metadata within the
DSS.

Topics covered in this lesson:
e Examining the change log entries for a script

e Importing and editing a script metadata

Lesson objective:
After completing this lesson, you will be able to:

e Understand the change log entries for each script

¢ Handle script metadata

Lesson pre-requisites

You have to be familiar with script manager basics (See the Script Manager basics

section for details) to take this lesson.

Script storage changes and metadata

One of the main challenges to data users is to keep a log of the changes made to a

data set and also save and keep its metadata updated. The DSS solves this

problem though an innovative solution. When a script storage is added to the Script

Manager, The DSS monitors all operations that is carried out on it noting the time

and date of this operation, and who carried it out. For example, when the storage is

added, an entry is added to the ‘Change log’ of this it to show the time and date of

adding this storage and also a description of the operation as shown in the below

figure. Not that this applies only to a whole storage not to individual

scripts/functions, therefore, you can see the change log and metadata tabs of

properties when viewing by storage only.

Page 38

Script Manager

Prapertiés onrx
-
4=
_____ [» 1-2014-12-1101:22:13 System, Updating - MyStorage o

[2-2014-12-11 00:44:07 System, Updating - MyStorage

[+ 3-2014-12-11 00:16:39 System, Updating - MyStorage

[4-2014-12-1100:01:51 System, Updating - MyStorage

System, Adding - NewStoragel

Activity Add
Data -
Date Time 12/11/201412:01 AM 3
Description Adding - New5toragel
Site MNBI_DSS_LAB 03
Source System
User Marne admin

5 2014-12-11 00:01:45
Systermn doing 'Adding - NewStoragel' at12/11/2014 12:01:45 AM

General I ChangelogentriesJ Metadata
Figure 8: Change log example

Similarly, the DSS allows you to import storage metadata (if exists) through an xml
schema. Once this schema is within the DSS, it is saved and linked to all storages where
the metadata can be entered and updated as needed.

To define the metadata properties an agreement on a common set of metadata
properties to be used has to be made. At a technical level the metadata properties must
be expressed as an XML schema. An example of a simple schema is:

<?xml version="1.8" encoding="utf-8"7?>»

<xs:schema attributeFormDefault="unqualified" elementFormDefault="qualified"
xmlns:xs="http://www.w3.org/2881/XML5chema™ >

¢xs:element name="[IELElE" > <!--Root node --»

<xsicomplexTypes
<X5:5equUencer

<xs:element name="identification” minQccurs="8" > <!--Category --»
<xgsicomplexTypes

<X5iseguences

<xs:element name="originator" type="xs:string" minOccurs="8" /»
<xs:element name="publicationdate" type="xs:dateTime" minOccurs="8" />
</xsisequence s

</xs5;complexType>

</%5:glement>

</¥3:seguence>

</xs5:complexTypes
</xsiglement>

</xs:5chema>

Page 39

Script Manager

The above simple schema defines one property, identification, which is optional (i.e.
minoccurs=0) and consists of two (also optional) values, originator and publicationdate.
The first is a string, while the latter is a date-time.

Data types of properties in such a schema should be kept to standard types as defined

by http://www.w3.0rg/2001/XMLSchema

A more elaborate sample is this — but still constructed following the line from above:

<?xml version="1.0" encoding="utf-8"?>
<xs:schema attributeFormDefault="unqualified" elementFormDefault="qualified"
xmIns:xs="http://www._w3.0rg/2001/XMLSchema'">
<xs:element name="[[SeLElE" >
<xs:complexType>
<Xxs:sequence>
<xs:element name="identification” minOccurs="0" >
<xs:complexType>
<xs:sequence>
<xs:element name="originator" type="xs:string" minOccurs="0" />
<xs:element name="publicationdate" type="xs:dateTime" minOccurs="0" />
<xs:element name="description" type="xs:string" minOccurs="0" />
<xs:element name="timeperiodofdata™ minOccurs="0" >
<xs:complexType>
<xs:sequence>
<xs:element name="fromdate" type='"'xs:dateTime" minOccurs="0" />
<xs:element name="todate" type="xs:dateTime" minOccurs="0" />
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="progress" type='"xs:string" minOccurs="0" />
<xs:element name="securityclassification” type="xs:string"” minOccurs="0"
/>
<xs:element name="securityhandlingdescription™ type="xs:string"
minOccurs="0" />
<xs:element name="contactperson” type='"xs:decimal” minOccurs="0" />
<xs:element name="contactorganization” type="xs:string" minOccurs="0" />
<xs:element name="contactemail™ type="xs:string"” minOccurs="0" />
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="dataquality" minOccurs="0" >
<xs:complexType>
<xs:sequence>
<xs:element name="logicalconsistencyreport” type="xs:string"
minOccurs="0" />
<xs:element name="accuracyreport" type="xs:string" minOccurs="0" />
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="spatialreference” minOccurs="0" >
<xs:complexType>
<xs:sequence>
<xs:element name="geographiccoordinatesystemname" type="xs:string"
minOccurs="0" />
<xs:element name="latituderesolution” type="xs:decimal"™ minOccurs="0" />
<xs:element name="longituderesolution” type="xs:decimal”™ minOccurs="0" />

Page 40

Script Manager

<xs:element name="geographiccoordinateunits" type="xs:string"
minOccurs="0" />
<xs:element name="unitofdatavalues" type='"xs:decimal™ minOccurs="0" />
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>

Note in addition to 'string' and 'datetime’ data types, 'decimal’ types are also used.

You are encouraged to read more about the xml schema in the 'Data Quality Assurance
Guideline: Data Processing, Quality Assurance and Metadata' report that was published
as part of the 'Data Compilation and Pilot Application of the Nile Basin Decision Support
System (NB-DSS)' study (Work Package 2: Stage 2).

Page 41

Script Manager

Exercises

Handling time series change Log and metadata

1- Add a storage into the Script * Properties i

Storage - NewStorage 1 -
Manager (See How scripts are
Stored n the DSS section for 4 Change Log entries Total number of Records are: 1

i ; ; em, Adding - NewStorage
details). In the Properties Windows, — e Sy NewStorgeL
. Data
Select the ‘Change log entries’ tab. R T
. . . Dezcripti Adding - MewStoragel

You will notice that there is one entry sfe s N;I_IIIZ;_ES_LL-EBZJ;IECJ
. Source Systern
n the Change |Og The entl'y ShOWS User Mame admin
that the storage was added to the
database. Double click the entry to 1-2014-12-1101:4044

System doing 'Adding - NewStoragel' at 12/11/2014 1:40:44 AM
expand (or alternatively click the little :

Generzal | Change IDgentries] Metadata
arrow to the left of the entry). You
can see more details such as the
activity type, date and time and user
who carried out the activity.

Properties oRx

2- Rename the storage and check
the again the ‘Change log entries’
tab.

What did you notice? Write down
your observations. (Hint: compare
what you see against the next
figure).

Please also not how the entries are
ordered.

Storage - NewMame

2
4 (Change log
4 Change Log entries

Total number of Records are: 2

TR FERTTE I System, Updating - NewName

Activity
Data
Date Time
Description
Site
Source
User Name
[2-2014-12-11 01:40:44

1-2014-12-11 01:42:49

Update

12/11/2014 1:42 AM

Updating - NewMame
NBI_DS5_LAB 03

System

admin

System, Adding - NewStoragel

System doing 'Updating - NewName' at 12/11/2014 1:42:49 AM

General | Change log entries | Metadata

Page 42

Script Manager

3- To handle metadata, a third tab
also exists for script storages which
stores its metadata. For the existing
storages no metadata fields exists.

Properties

o x

[Storage - Newhlame]

ENE

General | Change log entries | Metadata |

4- If no metadata fields does not
exist, it can be imported using the
‘Metadata Schema Import’ tool under
the ‘Data tools’ category. To use the
tool, select ‘Metadata Schema
Import’ from the ‘Data tools’

category.

: Tools Explorer

data tools

DataSeries Tools

""" 88 Stored Segquence
Other Tools

-y Datatook

..... M, Change-log query

-y, Data Export Tool

% Data Import Tool

-y, Event-log query

% Feature Class Query Tool

5- Once the tool is selected, its
properties appear in the ‘Properties’
window. Two parameters need to be
entered for this tool. The first is the
DSS entity type (i.e. script storage in
this case’) and the second is the ‘File
Path’ to the metadata schema file.
Select the
'‘NBDSS_Universal_v6.xsd' file that is
located in the
".\ScriptsExp\Data\metadata' folder.

" Metadata SchemaImport >

Raster Query Tool
Properties OoRx
Metadata Schema Import - Tool -
sl ra &
4 Description
Tool Metadata Schema Impart
4 Parameters
Entity Type Name Script Storage
iExp\Data‘metadata\NBDSS_Universal_vExsd{..)

Page 43

Script Manager

. # start Page [B MyStorage [B Newhlame | Import XSD to Entity T
6- Click the button. The next - —
Entity Type: | Script Storage Z: ‘

dialog box appears. Confirm that
both entity type and XSD file path are

5D File Path: Evmam\Training_HowTos\5criptsExp'\Data'r B

Execute | l Cancel l

correct and then click the

Execute button.

7- The metadata schema is imported
and loaded into the 'Meta data' tab.
Familiarize yourself with the content.

You may start adding data to the

different metadata fields.

Review Questions

1. Explain how storage metadata schema is imported and maintained with the DSS.
2. The DSS keeps track of all the operations made on a script.
= True
= False
3. When a script storage metadata schema is imported into the DSS, can this
schema be made available for time series data?
= True

= False

Page 44

Script Manager

Answers

1. The DSS allows the users to import script storage metadata schema through an
xml schema using the ‘Metadata Schema Import’ tool. Once this schema is within
the DSS, it is saved and linked to the storage. Metadata can also be updated
directly by the users if needed.

2. False.

3. False. A specific entity type is specified for each metadata schema at the time it
is imported into the DSS database.

Page 45

Script Manager

2.6. Creating complex scripts
Introduction
This lesson shows you how you can add a new complex script.

Topics covered in this lesson:
- Create a complex script

- Debug a complex script

- Save a complex script

Lesson objectives:
By the end of this lesson, it is anticipated that you will be familiar with the process of

creating complex scripts in the DSS.
Lesson pre-requisites

You have to be familiar with scripts' basics, simple scripts and Iron Python (See the

scripts' basics, simple scripts and IronPython primer sections for details) to take this

lesson.
Script arguments

The complex scripts are different from the simple ones as they have arguments. They
have to receive those arguments first before they run. They can receive them directly, or
from other simple or complex scripts. These arguments can be numbers, text or even a
DDS object (e.g. a time series or a scenario). In this section, creating a complex script

that takes two numbers as arguments will be described. In the advanced scripting

section, creating a complex script with a DSS object argument will be presented.

Page 46

Script Manager

Exercises

Adding, saving and running a complex script

1-Select '‘My Storage', right click it and
Delete Dl

select 'Edit storage’'.
Rename F2

Edit storage | Enter

2- In the script view, right-click and select ‘Insert' then 'Script with arguments' (Note that

you can alternatively do this by clicking @ the button on the toolbar).

|]
5 Insert k Script without arguments
Insert snippet... Ctrl+] Script with arguments
Undo Tool wrapper...
O L L

This will insert template code (see below) for a simple script including a header. The
script does nothing.

—def ScriptWame (paraml, param?):

TP RT

<Script>

<huthor>admin</Authory>

<Description>Please enter script description here</Description>
<Parameters>

<FParameter name="paraml"” tyvpe="int">Parameter of tvpe int</Parameter>
<Parameter name="param?" tyvpe="ITvpe">Farameter of type ITvpe</Parameter>
</Parameterss>

<ReturnValue type="IType">Function returns object of type IType</ReturnValue>
</Script>

e

$# write your code here

- passy

3- Rename the script and then modify it to simply sum two numbers. to do this:
e change the function name from 'ScriptName' to ‘SumTwoNumbers'
e change the script body to the following:

<Script>

<Author>admin</Author>

<Description>Please enter script description here</Description>

<Parameters>

<Parameter name="paraml™ type=""int'>Parameter of type
int</Parameter>

Page 47

Script Manager

<Parameter name="param2" type="'double>Parameter of type
double</Parameter>

</Parameters>

<ReturnValue type="double>Function returns object of type
double</ReturnValue>

</Script>

write your code here

return paraml + param2

pass;

Note the changes that were made to the arguments (i.e. parameters).

The script should look like the window below

def SumTwoNumbers (paraml, paraml):
wn
<Script>
<huthorsadmin</Authors>
<Description»Please enter script description here«/Description>
<Paramecers>
<Parameter name="paraml" type="int">Parameter of type int</Parametcer>
<Parameter name="param?" type="double"»FParameter of type double</Parameter>
</Parameters>
<ReturnValue type="double">Function returns object of type double</ReturnvValue>
</Script>
]
write your code here
return paraml 4+ param?

[}

ass;

Save the storage by clicking the on the toolbar and click save to confirm adding the

complex script.

lef MyFirstScript():

e

4- Now modify the 'MyFirstScript' script to
call the 'SumTwoNumbers' script as <Script>
<Buthorradmin</Author>

<Description>FPlease enter =
Add the following line </Script>

e

follows:

print SumTwoNumbers (2,3) _) _
write your code here

print 'Hello';
print SumTwoNumber=s (2, 3)

5- Run the 'MyFirstScript' script by | H P |MyFirstScript -1 P S %
selecting it the 'MyFirstScript' in the box
and then click the El button.

Page 48

Script Manager

The script debugger windows appears and the 'Hello' word appears in the '‘Output
window' as shown below followed by the sum of 2 and 3 (i.e. 5).

3 SeriptDebugger
MOl W s= = % & MyStorage -
My Storage
4 -
MyFirstScript(): F
e
4 E <Script>
5 i <huthorradmin</Author> |
& <Description>Please enter script description here</Description> 3
7 </Script>»
H TR
g # write your code here

print 'Hello';
print SumTwoNumbers (2,3}

def SumTwolumbers (paraml, param?):

e

<Scriptc>

<2uthorradmin<,/Authors>

<Description>Please enter =script description here</Description>
<Parameters>

<Parameter name="paraml” type="int">Parameter of type int</Parameter>
<Parameter name="param2" tyvpe="double">Parameter of type double</Parameter>
</Parameters>

<ReturnValue type="double">Function returns object of type double</ReturnValue:
=
Pl ot s i

7 m—] | 4

Output | Cal Stack | Watch
Hello B =
5

Finished

Page 49

Script Manager

Debugging a complex script

1- Add two breakpoints as shown next.

The first is within the 'MyFirstScript' script
at the first print line. The second in within
the 'SumTwoNumbers' script at the return

line.

§§idef MyFirstScript () :

o
<Script>

<Authorradmin</Author>
<Description>Please enter script des
</Script>

o

write your code here

print 'Hello':|

print SomTwoNumbers (2, 3)

SumTwoNumbers (paraml, param2):

o

<Seript>

<Authorradmin</Author>
<Description>Please enter script des
<Parameters>

<Parameter name="paramil™ type="int">
<Parameter name="param?" type="doubl
</Parameters>

<BeturnValue type="double™>Function
</Script>

o

write your code here

return paraml + param?

pass;

2- Run the 'MyFirstScript' script as done in
the previously. Now the script debuger
appears but it stops at the breakpoint line
as indicated by the yellow color shown

next.

3- Now look at the 'Output’ window of the

debugger. What do you notice?

—
Output | Call Stack | Watch |

Eldef MyFirstSeript():

nen

<Script>
<buthorradmin</huthors>
<Dezscription>Please enter
</ Script>

e

write vour code here

print SumTwoNumbers (2,3)

4- Move the the 'Call Stack' window of the
debugger. It shows the current execution
point which is line 10 in '"MyFirstScript' in
storage 'MyStorage'.

L

Output | Call Stack | Watch

Function LineMNumber

T ——

Page 50

Script Manager

5- Now move to the 'Watch' window and a
add watch to inspect a variable. To do
this, write 'paraml' in the input box and
click 'Add watch'. A line is added in the
list.

Note that the Watch window shows an
exception because paraml is not known
in the 'MyFirstScript' and cannot therefore

be evaluated.

Output | Call Stack | Watch |

Name Value
paraml Exception thrown: "name ‘paraml’ is not defin...
Ll Lil}
Add Watch

5- Go back to the 'Output’ window and

click the |5=|button on the debugger

toolbar (or press F10) to execute the
current line and move forward to next line.
Now the output window shows the word
'Hello'

Ell
Output | Call Stack | Watch |
Hello

6- Now click the | M| on the debugger

toolbar (or press F5) to continue the
execution until the next breakpoint.

Note that the following:

- The yellow color moved to the return line
in the 'SumTwoNumbers' script indicating
the current statement.

- The green color indicating the active
statement in ‘MyFirstScript' calling

'SumTwoNumbers'

write your code here

0, 0 print

print SumTwoNumbers (2, 3)

e Yl =
HeEllo! :

SumTwoNumbers (paraml, paramZ):

o

<Script>

<huthorradmin</Authors>
<Description>Please enter script ddg
<Parameters:>

<Parameter name="paraml™ type="int"
<Parameter name="param2"™ type="doul
</Parameters>

<RecurnValue type="double™>Function
<fSeriptc>

wen

write your code here
return paraml + param?

o pass;

7- Now move to the 'Call Stack' window. Where is the currect excution point? (Hint: the

line at the top of the call stack shows the current execution point)

Output | Call Stack | Watch |

! Module Function LineNumber
[3 Storage o lal=]
| MyStorage | MyFirst Script 11

Page 51

Script Manager

8- Now move to the 'Watch' window. Since we are within the 'SumTwoNumbers' Script,
the debugger was able to show the value of paraml1 which was passed from the
'‘MyFirstScript' (i.e. 2).

Output | Call Stack | Watch

Mame Value Type
paraml 2 int

9- Now move back to the 'Output’ windows and window and click the Z| button on the

debugger toolbar (or press F10) twice. Now the sum of the two numbers is printed and

the execution is back to 'MyFirstScript'

% ScrptDebugger ===
M Il B 5= E,E 2 % MyStorage -

MyStorage

<Description>Please enter script description here</Description>
</Script>

mo

5 ¥ write your code here

G_'_ print 'Hello';

it print SumTwoNumbers (2,3)

m

SumTwoNumbers (paraml, paraml):

<Script>
<Buthorradmin</Author> |
<Description>Please enter script description here</Description>

<Paramseters>

<Parameter name="paraml" type="int">Paramecter of type int</Parameter>

<Parameter name="param2" type="double">Parameter of type double</Parameter>
</Parameters:>

<ReturnValue type="double">Function returns cbject of type double</ReturnValue:
</Script>

L

write your code here

q; & return paraml + param?

lz7 i L pass; =
‘ '|' — 1 P
Qutput | Call Stack I Watch
Hello -
5
Paused

Check the 'Call stack' and 'Watch' windows and writedown your observations then click

Page 52

Script Manager

the

M

button to finish the sript run.

Review Questions

1. Give three examples of complex script arguments?
2. DSS abjects cannot be passed to a complex script.

= True

= False

Page 53

Script Manager

Answers

1. Complex script arguments can be:
- Numbers
- Text
- DSS objects

2. False (they can be passed).

Page 54

Script Manager

2.7. Predefined scripts in the DSS
Introduction

This lesson gives an overview of the DSS predefined scripts. It also shows you how you

can expand those predefined scripts.

Topics covered in this lesson:
e Who developed this set of predefined scripts

e Definition of each script showing its function.

e Expanding the predefined scripts in the DSS.

Lesson objective:
After completing this lesson, you will be familiar with the predefined scripts in the

DSS and you will know how to expand those scripts
Lesson pre-requisites

You have to be familiar with scripts basics (See the indicators' basics section for

details) to take this lesson.
Who developed this set of predefined scripts

During the development of the Nile basin DSS, a number of consultation meetings
and workshops were held to identify the key indicators that stakeholders in the Nile
Basin are most interested in. This was part of a consultancy called 'Data
Compilation and Pilot Application of the Nile Basin Decision Support System'.
Based upon the discussions between the stakeholders, the consultant identified a
number of key indicators that can be used in the DSS to evaluate scenarios and
undertake MCA and CBA. These indicators were divided into the following three
categories:

- Social indicators

- Environmental indicators

- Economic indicators
A scripting library was developed for the calculation of the above indicators. The

scripts are organized into the following eight storages:

Page 55

Script Manager

e BaseUtils: Generic scripts for common mathematical calculations,
interpolation, lookups, etc.

e SpreadsheetUtils: Scripts for accessing DSS spreadsheets and retrieving
arrays and/or lookup values from the spreadsheets associated with the
developed indicators.

e IndicatorUtils: Supporting scripts for calculating environmental, social and
economic indicators and calculation of ecologically relevant time series
statistics.

e NBIScripts: Scripts for calculation of food production indicators (Developed
by NBI)

o RasterUtils: Scripts for raster processing, mainly for flood damage
calculations.

e Environmental Indicators: Scripts for calculation of environmental
indicators.

e Social Indicators: Scripts for calculation of social indicators.

e Economic Indicators Scripts for calculation of economic indicators.

Figure 9 shows the dependencies between the above script storages.

— =
[A {

BaseUtils SpreadsheetUtils E"'l:zf'é‘;t":r'sm'
TE— > 4

pr——— %
F. y

\
il oo w,

! * / \ | IndicatorlUtils Indicators Praxy Irlrirn-:\.rs

e
\\ —
DSS Tima \ I'l.
Series NBIScripts Social Indicalors
Database \
e
o A
[u DSS Spatial Data Layers RasterlUtils

L

Figure 9: Script Storages and Dependencies

Page 56

Script Manager

In the following section, definition of the scripts that are used to calculate the DDS
indicators is given. For a full reference to the scripts within the above storages, you
are referred to the ???? report. The storages are self-documented using

comments.

Page 57

Script Manager

Scripts Definition

In this section, for each predefined script, the following is presented:
1. script sub-category
2. script name

3. adescription of what the script does

Social Indicators

Sub-category NB-DSS Script name Description

Calculates the change in availability of water for riparian users: domestic consumption,

Water Availability SOL_WaterAvailability subsistence agriculture and livestock

Calculates the susceptibility of irrigation scheme areas to malaria based on WHO malaria

SO2_Malariakndemicity incidence map for Africa

. SO3_PestDiseasePrevalence Calculates the prevalence of diseases resulting from pest species
Community Health
and Safety S04 _UrbanPollution Calculates the water pollution downstream major urban areas
SO5_HouseholdsFlooded Calculates the No households within the 100 year flood line
SO6_DrowningRisk Calculates the drowning risk due to conveyance of water in an open canal
SO7_Formallrrigation Calculates the footprint area due to establishment of new irrigation schemes

Food security and S081_RecessionAgricFloodPlain | Calculates the impact on Recession agriculture due to floodplain inundation

Livelihoods S082_RecessionAgricBank Calculates the impact on Recession agriculture due bank instability

S091_FishProductionDam Calculates the change in fish productivity in a dam, lake, or wetland

Page 58

Script Manager

Sub-category

NB-DSS Script name

Description

S092_FishProductionRiver

Calculates the change in fish productivity along a river reach

SO10_ProductiveLandUse

Calculates the productive land use for crops, grazing inundated by dam or lost due to
establishment of an irrigation scheme or a canal

SO11 LossNaturalResources

Calculates the change loss of access to natural resources due to inundation by dam or
establishment of an irrigation scheme or a canal

Displacement

S012_PhysicalDisplacement

Calculates the physical displacement of population due to inundation by a dam, establishment of

an irrigation scheme or construction of a canal

S0O13_EconomicDisplacement

Calculates the economic displacement due to disruption of access to natural resources (cattle,

people, wildlife) as a result of a canal and/or a dam construction

Page 59

Script Manager

Environmental Indicators

Sub-Category

NB-DSS Script Name

Description

Footprint Areas

EN1 EnvSensitiveAreas

Calculates the extent of Environmentally Sensitive Area within a dam, irrigation scheme or canal
footprint

EN11_EnvSensitiveRating

Calculates the impact rating on environmentally sensitive area within a dam, irrigation scheme or
canal footprint

EN12 HotspotRating

Determines the wetlands of international importance (Ramsar Sites) and Important Bird Areas
(IBAs) that fall outside of protected areas, but within primary impact zones.

EN2_Carbon

Calculates the area of woody biomass and biomass carbon within dam footprint

EN3_FishProduction

Estimates fish production from a dam, lake or a wetland

Downstream Areas

EN4_FloodPlaininundation

Calculates the floodplain area inundated compared to a baseline

EN42_WetlandArea

Calculates the wetland area inundated compared to a baseline

EN5_EcoStressRating

Determines ecological stress rating from changes in key flow components and flow variability
compared to baseline.

EN6_WetDuration

Calculates the wet season duration based on median monthly flows

EN7_BlackFlyRating

Determines black fly rating from HP operation, changes in low flows and variability compared to
baseline.

EN8_BankStability

Calculates bank stability rating downstream of impoundment based on standard deviation of
flows and predefined sinuosity

EN9_RecoveryDistance

Estimates recovery distance based on median discharge from impoundment and distance to
downstream tributary

EN10_WetSeasonShift

Calculates number of weeks delay in the onset of wet season compared to a baseline

Page 60

Script Manager

EN11_PhytoPlankton tEi?rt]lénated the phytoplankton growth potential based on empirical relationship with retention

Water Quality . - - — . —
EN12_AquaticMacrophyte Estimates qque_ltlg macrpphyte growth potential based on empirical relationship with nitrate
- concentration in irrigation scheme return flow

Page 61

Script Manager

Economic Indicators

Category NB-DSS Script Name Description

Navigation EC1_Navigation Calculates number of days above baseline flow threshold or change relative to baseline
EC21 AverageEnergy Calculates average energy generated at specific hydropower node over a specified period

Energy

EC22_AverageEnergy_ System

Calculates system wide average annual energy

Water conservation

EC31_EvapLoss

Calculates average annual evaporation from a dam, a wetland or a lake

EC32_EvaplLoss_System

Calculates system wide average annual evaporation

Floods

Flood Damage

Calculates flood damage based on damage-depth relationships for different land use types

Food production

EC51_FoodProductionSingle

Calculates food production of new irrigation schemes

EC51 FoodProduction

Calculates the potential reduction in crop yield of existing irrigation schemes due to upstream
developments

EC51 ProductionincomeSingle

Calculates actual crop income of new irrigation schemes

EC51 Productionincome

Calculates change in crop income of existing irrigation schemes due to upstream developments

Page 62

Script Manager

Expanding the DSS predefined scripts

To expand the DSS predefined set of scripts, you have the following two options:

o Add a new script: In this case you need to do the following:

Define what the script will do

Identify the data that is needed for the script. This can be external
(i.e. data does not exist in the DSS but can be organized in
spreadsheets and imported into the DSS) or internal (e.qg.
generated by DSS Modeling tools).

Add the script into a temporary storage within the Script Manager
code the script to using Iron Python

Test the script to ensure it works properly.

If testing is successful add the new script into a storage that is
already created into the DSS or if does not fit with any of them
create a new storage for it.

Ensure the header of the script is updated with a good description.

¢ Modify an existing script: This option might be needed if you think that the

existing script code needs to be improved. In this case you need to do the

following:

Identify what needs to be changed with the script.

Identify if more data that is needed for the script.

Modify the existing script® code.

Test the script to ensure it works properly.

If testing is successful add to the modified script into the same
storage.

Ensure your modifications are added to the header of the script.

Review Questions

1. What are the main predefined script storages in the DSS?

2. The DSS predefined set of indicators cannot be expanded.

= True

= False

® It is always advisable to keep a copy of an existing script before modifying.

Page 63

Script Manager

Answers

1. The predefined indicators are divided into the following three main categories:

BaseUtils.
SpreadsheetUtils.
IndicatorUtils.

NBIScripts.

RasterUtils.
Environmental Indicators.

Social Indicators.

Economic Indicators Scripts.

2. False (it can be expanded).

Page 64

Script Manager

2.8. Advanced scripting
Introduction

This lesson introduces you to two advanced scripting topics, namely, using the
DSS Application Programming Interface (API) in scripts (including accessing
DSS objects such as time series, GIS layers, scenarios and spreadsheets) and

using DSS tools in a script.

Topics covered in this lesson:
- What is the DSS Application Programming Interface (API)

- Using the API to access the DSS objects
- Use the DSS tools in scripts

Lesson objectives:
By the end of this lesson, it is anticipated that you will be familiar with the DSS

API and how you can use it to access DSS objects and tools in a script.
Lesson pre-requisites

You have to be familiar with scripts' basics, complex scripts and Iron Python

(See the scripts' basics, complex scripts and IronPython primer sections for

details) to take this lesson.
What is an Application Programming Interface (API)?

An application programming interface (API) is a set of routines, protocols, and tools
for building software applications. An AP| expresses a software component in terms
of its operations, inputs, outputs, and underlying types. An API defines functionalities
that are independent of their respective implementations, which allows definitions
and implementations to vary without compromising each other. A good API makes it
easier to develop a program by providing all the building blocks. A programmer then

puts the blocks together.

What is the DSS (API)?

Based on the above definition, The DSS API a set of functions and procedures that
allow the creation of applications (e.g. scripts) which access the features or data of

the DSS. For example, imagine you need to get time series data from the Timeseries

Page 65

Script Manager

Manger to calculate its average value. The DSS API should have the functionality

that would allow you using Iron Python to do this.

Page 66

Script Manager

Exercises

Accessing DSS objects using Iron Python(time series object)

1-Select 'My Storage', right click it and
Delete Del

select 'Edit storage'.
Rename F2

Edit storage | Enter

2- In the script view, right-click and select 'Insert' then 'Script with arguments' (Note that

you can alternatively do this by clicking @ the button on the toolbar).

| L]
5 Insert r Script without arguments
Insert snippet... Ctrl+1 Script with arguments
Undo Tool wrapper...
0 | L

This will insert template code (see below) for a simple script including a header. The

script does nothing.

(—|def ScriptWName (paraml, param?2):

LR R

<Script>

<huthorradmin</Authors>

<Description»Please enter script description here</Description>»
<Parameters>

<Parameter namse="paraml" type="int">Parametcer of type int</Paramstcer>
<Parameter name="param2" type="IType">Parameter of type IType</Parameter>
</Paramseters:>

<ReturnValue type="IType">Function returns object of type IType</ReturnvValue>
</Script>

LR R

write your code here

- pass:

=7

3- Rename the script and then modify it to calculate the average of a time series. to do
this:
e change the function name from 'ScriptName' to 'TimeseriesAverage'

e change the script body to the following:

<Script>

<Author>admin</Author>

<Description>Please enter script description here</Description>

<Parameters>

<Parameter name="ts" type="IDataSeries''>Parameter of
IDataSeries</Parameter>

</Parameters>

<ReturnValue type="double">Function returns the average of the

Page 67

Script Manager

ts</ReturnValue>
</Script>

return ts.Statistics.Average
pass;

Note the changes that was made to the arguments.

Script should look like the window below

—|def TimeseriesAverage (CLs):
o
<Script>
<Authorradmin</Author>
<Description>»Please enter script description here</Description>
<Parameters>
<Parameter name="ts" type="IDataSeries">Parameter of IDataSeries</Parameter>
</Parameterss
<ReturnValue type="double">Function returns the average of the ts</ReturnValue>
</Scriptx>
mem
return ts.5tatistics.Average

ass;

Ls]

This script takes one parameter which is a time series. It then uses the Statitics tools of

the time series to calculate the average.

Save the storage by clicking the on the toolbar and click save to confirm adding the

complex script.

4- Now we need to modify the [Hdef MyFirstScript():
'MyFirstScript' script to call the <Script>

) . . . <Buthorrzadming/Author>
‘TimeseriesAverage' script. But to do this ; <Description>Please enter script desd

. ; </fScript>
we need to have an access to at time _ mirn
. . : ¥ Wrlite our code here

series. To do this place the cursor below print 'Hello’:

print SumTwoNumbers (2,3)

the last line in the 'MyFirstScript'. right

Insert 3

click and select insert snippet. : Ctrle

Undo

ffdef

Page 68

Script Manager

. 2 L1
8- The next window appears. It has a 'fajts_lf = =
eLt r
. : = Python - Range |
slection of code sinppets that can be rauty| — FYihon - Range loop
soru] - Python - ."a’hfle loop
inserted directely into a script. In this case | [g| — Python - Felfeise

select the code the gets a time series.

Python - Get sub string

{' Modules - Getting Time series] |

= Modules - Getting GIS |

Modules - Getting Spreadshest

Modules - Getting Scenario

Time series - Fetching from database

Spreadsheet - Fetching from database

Spreadshest - Setting a cell value

Spreadshest - Getting a cell value

= Spreadsheet - Creating an event handler

- Scenario - Fetching from database -
[

m

ef

9- Examine the lines that were inserted

into the script. First an object called ‘app'

Get a reference to the Time series Manager
tsMgr = app.Modules.Get('Time series Managex')

% Use it for e=.g. reading a time series
. . ts = tsMgr.TimeSeriesList.Fetch(path-to-timeseries
was used to get access to the time series
manager (the 'tsMgr’ variable). Then, the
manager is used to get the Time series
data (the 'ts’).
10- Before running the script, you need to Time series o x
. . . |:—'_|---I-"|; Database [by Group]
define the path to the time series. To do = @B DSS Traning
this activate the Timeseries manager and EiRian Ll
Rain Copy Ctrl+C
right click a time series and copy its path ztﬁ Ctrl+ Shift+ C
. . : Cut Ctrl+X
using the 'Copy full path' option. . Sud
9 Py P P o Eﬂ Delete Del
hi4 2
G B Ensemb Rename F2
& Models Add association
£} Mew gr
Remove association

11- Modify the code as shown next by e = catise imeotrimcties. eson .
pasting the full path you copied above and

adding a (') before and after the path so it

is read as a text.

12- Add the following line to call the print TimeseriesAverage (ts)

"TimeseriesAverage' script:

print TimeseriesAverage (ts)

Page 69

Script Manager

13- Run the 'MyFirstScript' script by | 5 B | MyFirstScript P SR TRE
selecting it the 'MyFirstScript' in the box
and then click the El button.

14- The script debugger windows appears and the 'Hello' word appears in the 'Output
window' as shown below followed by the sum of 2 and 3 (i.e. 5) and then the average

value of the time series.

%ﬁ‘): ScriptDebugger

= U= % ¥ MyStorage -

-

MyStorage

!_‘_ o def MyFirstScript():

| o

»

4 <Script>
& <Authorradmin</Author>
: <Deacription»Please enter script description here</Description>»
</ Seripes>

mnm

.

write your code here
print '"Hello':
print SumTwoNumbers (2, 3)

¥ Get a2 reference to the
tsMgr = app.Modules.Get{'Time seri
16 # Use it for e.g. reading a time series
17 | ts = tsMgr.TimeSerieslList.Fetch('/DSS

L print TimeseriesAverage (C3)

o< Tl | 3

Output | Call Stack | Watch

Hello -
5
952729453892

Finished

15- Use the code sinnpets to access other DSS objects such as a GIS layer.

Page 70

Script Manager

Accessing tools using a script

def MyFirstScript():
rrrer
<Script>
<huthorradmin</Authors>
<Description>Please enter script description here</Descriptions»
</Script>
FErrer
$# write your code here
print 'Hello':
print SumTwolumbers (2, 3)

Get a reference to the Time =series Manager
taMgr = app.Modules.Get('Time =series Manager')

Uze it for e.g. reading a time =series

tz = tsMgr.TimeSerieslList.Petch ('/D55 Training/Beles rainfall')
print TimeseriesAverage (t=s)

% Get the Resample tool

tool = app.Tools.CreateNew ('Lverage') ;

% Ldd the time series to the resample tool

tool.Inputltems.Add(cs);

Execute the tool
tool.Execute () ;

Get the output time =series
AvgT5 = tool.CutputItems=[0];

print (AwvgT5)

Review Questions

1. Whatis an API?

Page 71

Script Manager

Answers

1. An application programming interface (API) is a set of routines, protocols, and

tools for building software applications

Page 72

Script Manager

3. References

- Nile Basin Decision Support System help file (DSS Ver. 2.0)

- Nile Basin Decision Support training material (developed in 2013 and 2014)

- DHI training material for the Nile Basin Decision Support (developed in 2012)

- WP2 Report: NB-DSS WP2 Stage 2 'Data Quality Assurance Guideline: Data
Processing, Quality Assurance and Metadata' (2012)

- WP2 Report: NB-DSS WP2 Stage 2 'Guideline for the Evaluation of Water

Management Interventions' (2012)

Page 73

