
Script Manager

Nile Basin Decision Support System

Script Manager Training Module

Script Manager

i

Revision History

Version Date Revision Description

0.1 10/12/2014 Initial draft

Script Manager

 Page 1

Contents
Revision History... i

1. Introduction ... 3
1.1. Purpose ... 3
1.2. Module pre-requisites ... 3
1.3. Expectations .. 3
1.4. Conventions .. 3
1.5. Module data .. 3
1.6. Links to additional resources ... 4
1.7. Problem Reporting Instructions .. 4

2. Lessons .. 5
2.1. General ... 6

Introduction ... 6
What is a script? .. 6
What are the uses of Scripts in the DSS? .. 6
What is the 'Iron Python' scripting language? ... 7
Review Questions .. 7

2.2. IronPython primer ... 9
Introduction ... 9
Lesson pre-requisites ... 9
Properties .. 9
Getting help... 9
Syntax ... 10
Data types ... 11
Strings ... 12
Flow control statements ... 12
Functions .. 13
Classes .. 14
Exceptions... 16
Importing .. 16
File I/O ... 17
Miscellaneous ... 17
Review Questions .. 19
Answers .. 20

2.3. Script Manager basics .. 21
Introduction ... 21
Lesson pre-requisites ... 21
The DSS Script Manager components .. 21
How scripts are stored in the DSS .. 23
Script types in the DSS .. 24
Exercises ... 25
Review Questions .. 26
Answers .. 27
Answers .. 27

2.4. Creating simple scripts ... 28

Script Manager

 Page 2

Introduction ... 28
Lesson pre-requisites ... 28
Script details ... 28
Script debugging ... 29
Exercises ... 30
Review Questions .. 36
Answers .. 37

2.5. Handling changes and metadata .. 38
Introduction ... 38
Lesson pre-requisites ... 38
Script storage changes and metadata .. 38
Exercises ... 42
Review Questions .. 44
Answers .. 45

2.6. Creating complex scripts .. 46
Introduction ... 46
Lesson pre-requisites ... 46
Script arguments .. 46
Exercises ... 47
Review Questions .. 53
Answers .. 54

2.7. Predefined scripts in the DSS ... 55
Introduction ... 55
Lesson pre-requisites ... 55
Who developed this set of predefined indicators ... 55
Scripts Definition .. 58
Expanding the DSS predefined scripts.. 63
Review Questions .. 63
Answers .. 64

2.8. Advanced scripting .. 65
Introduction ... 65
Lesson pre-requisites ... 65
What is an Application Programming Interface (API)? ... 65
What is the DSS (API)? ... 65
Exercises ... 6766
Review Questions .. 7170
Answers .. 7271

3. References... 7372

Script Manager

 Page 3

1. Introduction

This document is part of training modules for the Nile Basin Decision Support System
(DSS). These modules are developed for use in classroom training that is given to Nile
Basin countries and as a self-learning training material that will be made available as
part of the DSS helpdesk and knowledgebase.

1.1. Purpose

The purpose of this document is to provide a tutorial on the DSS Script Manager. The
tutorial starts with the basics and progressively increases in complexity.

1.2. Module pre-requisites

The following prerequisites are needed before taking this tutorial:
Software prerequisites: The Mike by DHI version 2014 and the DSS version 2.0 have to
be installed.
User prerequisites: User is expected to be familiar with the DSS User Interface basics.

1.3. Expectations

Upon successful completion of the lessons, exercises and review questions in this
document, you will be familiar with most of the Script Manager functionalities.

1.4. Conventions

The following conventions are followed in this document:
means a tip for the user

 means important information

1.5. Module data

Files that are needed for this module are located at the ..\ScriptsExp\data folder.

Script Manager

 Page 4

1.6. Links to additional resources

In addition to the information presented in this module, below are links to additional
resources that you can access to obtain further information on the following:

 Script Manager:
 The DSS help file accessible by clicking on the button

 Iron Python scripting language:
 http://ironpython.net/

1.7. Problem Reporting Instructions

This document will be updated regularly. Therefore, it is highly recommended to report
any spotted problem to helpdesk@nilebasin.org so it can be corrected in future versions.
When reporting the problem, you are kindly requested to provide the following:

 Document title
 Document version
 Page number where the problem was spotted
 A description of the problem

Script Manager

 Page 5

2. Lessons

In this section the following lessons (with exercises) are included:
 General: This lesson introduces you to script definition in general and within the

DSS, uses of scripts in the DSS. It then gives an overview of the 'Iron Python' the
scripting language used in the DSS.

 Iron Python primer: This lesson gives a basic explanation of language
components and their syntax.

 Script Manager basics: This lesson introduces you to the Script Manager
components, how scripts are stored in the DSS, DSS script types and to some
basic tasks such as activating the manager.

 Creating simple scripts: This lesson shows you how you can create, debug and
save a simple script in the DSS.

 Handling changes and metadata: This lesson introduces you to the change log
and metadata sections of each script. It also shows how they can be used.

 Creating complex scripts: This lesson shows you how you can create, debug and
save a complex script in the DSS.

 Predefined scripts: This lesson gives an overview of the DSS predefined scripts.
It also shows you how you can expand the predefined indicators

 Advanced scripting: This lesson introduces you to two advanced scripting topics,
namely, using the DSS Application Programming Interface in scripts (including
accessing DSS objects such as time series, GIS layers, scenarios and
spreadsheets) and using DSS tools in a script.

After completing the lessons and exercises in this section you will be able to use
the Scripts Manager to manage scripts within the DSS.

Script Manager

 Page 6

2.1. General

Introduction
This lesson introduces you to scripting in general and within the DSS, and to uses
of scripts in the DSS. It then gives an overview of the 'Iron Python', the scripting
language used in the DSS. If you are familiar with those definitions and concepts
you can skip this and move to the next lesson.

Topics covered in this lesson:

 What is a script? And what are its uses in the DSS?
 an overview of the 'Iron Python' the scripting language

Lesson objectives:
After completing this lesson, you will be familiar with the following:

 Script- concepts and uses in the DSS.
 The 'Iron Python' scripting language.

What is a script?

A script is a series of instructions that are written using a scripting language to
typically automate repetitive tasks. These instructions are interpreted or carried out
by another program (interpreter) rather than directly by the computer processor (as
a compiled program is). To give an example, The DSS is a compiled program which
runs directly by the computer processor. If you write a script within the DSS, you
don't need to compile it and run separately. It can run within the DSS which will
interpret it line by line. In this case the script instructions are passed to the computer
processor via the DSS (i.e. the interpreter is part of the compiled DSS.

What are the uses of Scripts in the DSS?

In the DSS, scripts can be used to for the following various reasons:
 Automate repetitive tasks. Imagine you have daily task of checking daily

rainfall data records of a number of catchment gauges. To do this, you can
write a script to import and check this data using the DSS tools.

 Calculate the value of an indicator. For example, if you want to calculate the
evaporation losses from a reservoir, you can write a script that processes

Script Manager

 Page 7

the evaporation time series of this reservoir (i.e. using the reservoir model
results) and then calculates the total evaporation losses from this reservoir.

 Create customized functionality in the DSS such as creating other Managers
Tools, or model Adapters.

What is the 'Iron Python' scripting language?

Iron Python is the scripting language of the DSS. It is an open-source
implementation of the Python programming language1. Iron Python is integrated
within the Microsoft .NET Framework and can use both the .NET Framework and
Python libraries. Other .NET languages can also use Iron Python code. It is
considered as an excellent addition to the .NET Framework, providing Python
developers with the power of the .NET framework. Existing .NET developers can
also use Iron Python as a fast and expressive scripting language for embedding,
testing, or writing new applications. For more details about the language see the
IronPython primer section

Review Questions

1. What is a script?
2. What are the uses of scripts in the DSS?

1 See more details at http://python.org/

Script Manager

 Page 8

Answers

1. A script is a series of instructions that are written using a scripting language
to typically automate repetitive tasks.

2. In the DSS, scripts can be used to for the following various reasons:
 Automate repetitive tasks.
 Calculate the value of an indicator.
 Create customized functionality in the DSS such as creating other

Managers Tools, or model Adapters.

Script Manager

 Page 9

2.2. IronPython primer
Introduction

This primer will attempt to teach you Python2. It will just show you some basic
concepts to start you off. It assumes that you are already familiar with programming
and will, therefore, skip most of the non-language-specific material. The important
keywords will be highlighted so you can easily spot them. Also, pay attention
because, due to the nature of this tutorial, some things will be introduced directly in
code and only briefly commented on. This primer also assumes that you have
already installed Python on your computer.

Lesson objectives:
By the end of this lesson, it is anticipated that you will be familiar with the Iron
Python language components and their syntax.

Lesson pre-requisites

You have to be familiar with the programming basics to take this lesson.

Properties

Python is strongly typed (i.e. types are enforced), dynamically, implicitly typed (i.e.
you don't have to declare variables), case sensitive (i.e. var and VAR are two
different variables) and object-oriented (i.e. everything is an object) scripting
language.

Getting help

Help in Python is always available right in the interpreter. If you want to know how

an object works, all you have to do is call help(<object>).Also useful

are dir(), which shows you all the object's methods,

and <object>.__doc__, which shows you its documentation string:
>>> help(5)
Help on int object:

2 Python and Iron Python are very similar but not identical

Script Manager

 Page 10

(etc etc)

>>> dir(5)
['__abs__', '__add__', ...]

>>> abs.__doc__
'abs(number) -> number

Return the absolute value of the argument.'

Syntax

Python has no mandatory statement termination characters and blocks are
specified by indentation. Indent to begin a block, dedent to end one. Statements
that expect an indentation level end in a colon (:). Comments start with the pound
(#) sign and are single-line, multi-line strings are used for multi-line
comments. Values are assigned (in fact, objects are bound to names) with the
equals sign ("="), and equality testing is done using two _equals_ signs ("==").
You can increment/decrement values using the += and -= operators respectively by
the right-hand amount. This works on many datatypes, strings included. You can
also use multiple variables on one line. For example:

>>> myvar = 3
>>> myvar += 2
>>> myvar
5
>>> myvar -= 1
>>> myvar
4
"""This is a multiline comment.
The following lines concatenate the two strings."""
>>> mystring = "Hello"
>>> mystring += " world."
>>> print mystring
Hello world.
This swaps the variables in one line(!).
It doesn't violate strong typing because values aren't
actually being assigned, but new objects are bound to
the old names.
>>> myvar, mystring = mystring, myvar

Script Manager

 Page 11

Data sturctures

The data structures available in python are lists, tuples and dictionaries. Sets are

available in the sets library (but are built-in in Python 2.5 and later). Lists are like one-

dimensional arrays (but you can also have lists of other lists), dictionaries are

associative arrays (a.k.a. hash or look-up tables) and tuples are immutable one-

dimensional arrays (Python "arrays" can be of any type, so you can mix e.g. integers,

strings, etc in lists/dictionaries/tuples). The index of the first item in all array types is 0.

Negative numbers count from the end towards the beginning, -1 is the last item.

Variables can point to functions. Note that lists use square brackets [], tuples use

parentheses () while dictionaries use braces { }. The usage is as follows:

>>> sample = [1, ["another", "list"], ("a", "tuple")]
>>> mylist = ["List item 1", 2, 3.14]
>>> mylist[0] = "List item 1 again" # We're changing the item.
>>> mylist[-1] = 3.21 # Here, we refer to the last item.
>>> mydict = {"Key 1": "Value 1", 2: 3, "pi": 3.14}
>>> mydict["pi"] = 3.15 # This is how you change dictionary
values.
>>> mytuple = (1, 2, 3)
>>> myfunction = len
>>> print myfunction(mylist)
3

You can access array ranges using a colon (:). Leaving the start index empty assumes
the first item, leaving the end index assumes the last item. Negative indexes
count from the last item backwards (thus -1 is the last item) like so:

>>> mylist = ["List item 1", 2, 3.14]
>>> print mylist[:]
['List item 1', 2, 3.1400000000000001]
>>> print mylist[0:2]
['List item 1', 2]
>>> print mylist[-3:-1]
['List item 1', 2]
>>> print mylist[1:]
[2, 3.14]

Script Manager

 Page 12

Adding a third parameter, "step" will have Python step in
N item increments, rather than 1.
E.g., this will return the first item, then go to the third
and
return that (so, items 0 and 2 in 0-indexing).
>>> print mylist[::2]
['List item 1', 3.14]

Strings

Strings can use either single or double quotation marks, and you can have quotation
marks of one kind inside a string that uses the other kind (i.e. "He said 'hello'." is valid).
Multiline strings are enclosed in triple double (or single) quotes ("""). Python supports
Unicode out of the box, using the syntax u"This is a unicode string". To fill a string with
values, you use the % (modulo) operator and a tuple. Each %s gets replaced with an
item from the tuple, left to right, and you can also use dictionary substitutions, like so:

>>>print "Name: %s\
Number: %s\
String: %s" % (myclass.name, 3, 3 * "-")
Name: Poromenos
Number: 3
String: ---

strString = """This is
a multiline
string."""

WARNING: Watch out for the trailing s in "%(key)s".
>>> print "This %(verb)s a %(noun)s." % {"noun": "test",
"verb": "is"}
This is a test.

Flow control statements

Flow control statements are if, for, and while. There is no select; instead,
use if. Use for to enumerate through members of a list. To obtain a list of numbers,
use range(<number>). These statements' syntax is thus:

rangelist = range(10)

Script Manager

 Page 13

>>> print rangelist
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
for number in rangelist:
 # Check if number is one of
 # the numbers in the tuple.
 if number in (3, 4, 7, 9):
 # "Break" terminates a for without
 # executing the "else" clause.
 break
 else:
 # "Continue" starts the next iteration
 # of the loop. It's rather useless here,
 # as it's the last statement of the loop.
 continue
else:
 # The "else" clause is optional and is
 # executed only if the loop didn't "break".
 pass # Do nothing

if rangelist[1] == 2:
 print "The second item (lists are 0-based) is 2"
elif rangelist[1] == 3:
 print "The second item (lists are 0-based) is 3"
else:
 print "Dunno"

while rangelist[1] == 1:
 pass

Functions

Functions are declared with the "def" keyword. Optional arguments are set in the
function declaration after the mandatory arguments by being assigned a default value.
For named arguments, the name of the argument is assigned a value. Functions can
return a tuple (and using tuple unpacking you can effectively return multiple
values). Lambda functions are ad hoc functions that are comprised of a single
statement. Parameters are passed by reference, but immutable types (tuples, ints,
strings, etc) *cannot be changed*. This is because only the memory location of the item
is passed, and binding another object to a variable discards the old one, so immutable
types are replaced. For example:

Script Manager

 Page 14

Same as def funcvar(x): return x + 1
funcvar = lambda x: x + 1
>>> print funcvar(1)
2

an_int and a_string are optional, they have default values
if one is not passed (2 and "A default string",
respectively).
def passing_example(a_list, an_int=2, a_string="A default
string"):
 a_list.append("A new item")
 an_int = 4
 return a_list, an_int, a_string

>>> my_list = [1, 2, 3]
>>> my_int = 10
>>> print passing_example(my_list, my_int)
([1, 2, 3, 'A new item'], 4, "A default string")
>>> my_list
[1, 2, 3, 'A new item']
>>> my_int
10

Classes

Python supports a limited form of multiple inheritance in classes. Private variables and
methods can be declared (by convention, this is not enforced by the language) by
adding at least two leading underscores and at most one trailing one (e.g. "__spam").
We can also bind arbitrary names to class instances. An example follows:

class MyClass(object):
 common = 10
 def __init__(self):
 self.myvariable = 3
 def myfunction(self, arg1, arg2):
 return self.myvariable

 # This is the class instantiation
>>> classinstance = MyClass()
>>> classinstance.myfunction(1, 2)
3
This variable is shared by all classes.

Script Manager

 Page 15

>>> classinstance2 = MyClass()
>>> classinstance.common
10
>>> classinstance2.common
10
Note how we use the class name
instead of the instance.
>>> MyClass.common = 30
>>> classinstance.common
30
>>> classinstance2.common
30
This will not update the variable on the class,
instead it will bind a new object to the old
variable name.
>>> classinstance.common = 10
>>> classinstance.common
10
>>> classinstance2.common
30
>>> MyClass.common = 50
This has not changed, because "common" is
now an instance variable.
>>> classinstance.common
10
>>> classinstance2.common
50

This class inherits from MyClass. The example
class above inherits from "object", which makes
it what's called a "new-style class".
Multiple inheritance is declared as:
class OtherClass(MyClass1, MyClass2, MyClassN)
class OtherClass(MyClass):
 # The "self" argument is passed automatically
 # and refers to the class instance, so you can set
 # instance variables as above, but from inside the class.
 def __init__(self, arg1):
 self.myvariable = 3
 print arg1

>>> classinstance = OtherClass("hello")
hello

Script Manager

 Page 16

>>> classinstance.myfunction(1, 2)
3
This class doesn't have a .test member, but
we can add one to the instance anyway. Note
that this will only be a member of classinstance.
>>> classinstance.test = 10
>>> classinstance.test
10

Exceptions

Exceptions in Python are handled with try-except [exceptionname] blocks:

def some_function():
 try:
 # Division by zero raises an exception
 10 / 0
 except ZeroDivisionError:
 print "Oops, invalid."
 else:
 # Exception didn't occur, we're good.
 pass
 finally:
 # This is executed after the code block is run
 # and all exceptions have been handled, even
 # if a new exception is raised while handling.
 print "We're done with that."

>>> some_function()
Oops, invalid.
We're done with that.

Importing

External libraries are used with the import [libname] keyword. You can also
use from [libname] import [funcname] for individual functions.
Here is an example:
import random
from time import clock

randomint = random.randint(1, 100)
>>> print randomint

Script Manager

 Page 17

64

File I/O

Python has a wide array of libraries built in. As an example, here is
how serializing (converting data structures to strings using the pickle library) with
file I/O is used:

import pickle
mylist = ["This", "is", 4, 13327]
Open the file C:\\binary.dat for writing. The letter r
before the
filename string is used to prevent backslash escaping.
myfile = open(r"C:\\binary.dat", "w")
pickle.dump(mylist, myfile)
myfile.close()

myfile = open(r"C:\\text.txt", "w")
myfile.write("This is a sample string")
myfile.close()

myfile = open(r"C:\\text.txt")
>>> print myfile.read()
'This is a sample string'
myfile.close()

Open the file for reading.
myfile = open(r"C:\\binary.dat")
loadedlist = pickle.load(myfile)
myfile.close()
>>> print loadedlist
['This', 'is', 4, 13327]

Miscellaneous

 Conditions can be chained. 1 < a < 3 checks that a is both less than 3 and
greater than 1.

 You can use del to delete variables or items in arrays.
 List comprehensions provide a powerful way to create and manipulate lists. They

consist of an expression followed by a for clause followed by zero or
more if or for clauses, like so:

Script Manager

 Page 18

>>> lst1 = [1, 2, 3]
>>> lst2 = [3, 4, 5]
>>> print [x * y for x in lst1 for y in lst2]
[3, 4, 5, 6, 8, 10, 9, 12, 15]
>>> print [x for x in lst1 if 4 > x > 1]
[2, 3]
Check if a condition is true for any items.
"any" returns true if any item in the list is true.
>>> any([i % 3 for i in [3, 3, 4, 4, 3]])
True
This is because 4 % 3 = 1, and 1 is true, so any()
returns True.

Check for how many items a condition is true.
>>> sum(1 for i in [3, 3, 4, 4, 3] if i == 4)
2
>>> del lst1[0]
>>> print lst1
[2, 3]
>>> del lst1

1. Global variables are declared outside of functions and can be read without any
special declarations, but if you want to write to them you must declare them at
the beginning of the function with the "global" keyword, otherwise Python will
bind that object to a new local variable (be careful of that, it's a small catch that
can get you if you don't know it). For example:

number = 5

def myfunc():
 # This will print 5.
 print number

def anotherfunc():
 # This raises an exception because the variable has not
 # been bound before printing. Python knows that it an
 # object will be bound to it later and creates a new,
local
 # object instead of accessing the global one.
 print number
 number = 3

def yetanotherfunc():
 global number

Script Manager

 Page 19

 # This will correctly change the global.
 number = 3

Review Questions

1. What is the differences between a list, a dictionary and a tuple?
2. Does Python have a “select” statement?
3.

Script Manager

 Page 20

Answers

Script Manager

 Page 21

2.3. Script Manager basics
Introduction

This lesson introduces you to the Script Manager basics.

Topics covered in this lesson:

 Script Manager components
 How scripts are stored in the DSS
 DSS script types
 Basic tasks such as activating the manager

Lesson objectives:
By the end of this lesson, it is anticipated that you will be familiar with the Script
Manager basics.

Lesson pre-requisites

You have to be familiar with the DSS User Interface basics to take this lesson.

The DSS Script Manager components

Figure 1Figure 2 shows the components of the DSS Script Manager, namely:

1. The Scripts Explorer: where scripts are organized in user defined groups and
subgroups or by storage (i.e. files).
2. The scripts view: where scripts are created, modified, debugged for errors and
saved.
3. Tools Explorer: in this case it is used only to export and import scripts
definitions. Since it is not used much for scripts it is not further described in this
module.
4. The Properties window: where the selected script data is displayed.

Script Manager

 Page 22

Figure 1: Script Manager components

Script Manager

 Page 23

How scripts are stored in the DSS

When a new database is created, the Scripts Explorer window has only one main group
which is the Database as shown in Figure 2Figure 3. Next to the 'Database' node, you
can see that between parentheses 'by Group' is written.

Figure 2: Scripts explorer for newly created databases (showing database by group)

Right click the database and select view by 'Storage' as shown in Figure 3.

Figure 3

Now the text next to the 'Database' node changes to 'by Storage' as shown in Figure 4.

Figure 4: Scripts explorer for newly created databases (showing database by storage)

Therefore as you probably expected, Scripts can be viewed either by group or storage.
Viewing by group is similar to arranging scripts in folders to easily access them (similar
to other DSS objects in other explorers). So what is viewing by storage? A storage is
equivalent to a file. In the DSS, a storage contains one or more scripts and functions
coded in IronPython. Before you can add scripts to the DSS, you need first to add a new

Script Manager

 Page 24

storage. This is done by first viewing the scripts in 'by Storage' view, then right click the
'Database' node and select 'Add storage' as shown in Figure 5.

Figure 5: Adding a storage to the database

This adds a storage as shown in Figure 6.

Figure 6: New storage is added to the database

Script types in the DSS

 The scripts in the DSS have the following two types:
 Scripts with no arguments (i.e. simple scripts) which does not need arguments

(i.e. data) to be passed to it before running. So it is a self-contained script that
has all the data and code that are needed to run.

 Scripts with arguments (i.e. complex scripts) which does need arguments (i.e.
data) to be passed to it before running. So it is a self-contained in terms of code
but not data.

In addition, there are functions, which can only be called internally by other functions
of scripts but are hidden when indicators are defined. Scripts are differentiated from
functions by the header which is only required for scripts. For scripts to be used to
calculate indicators, they have to return a single numeric output.

Script Manager

 Page 25

Exercises

Activating the script Manager
1- In the DSS, click on Menu, click
“Explorers…” and the Explorer
Configuration box appears. Tick the box
next to 'Scripts' explorer.

'Scripts' explorer should appear within the
DSS window. The explorer has a root
node 'Database'.

Adding a new 'user defined' group
1- In the 'scripts' explorer, ensure that the
scripts are shown by group as show next.

Script Manager

 Page 26

2- Right click on the 'Database' group,
click on the option.

A new group is added as shown next.

3- Select the new group and either right
click with the mouse and select
or press the keyboard function Key 'F2' to
rename it.

4- Enter a suitable name (e.g. My
Scripts).

 Review Questions

1. List the components of the Script Manager.
2. Scripts can be viewed by group or storage in the DSS – explain the

difference.
 True
 False

Script Manager

 Page 27

Answers

1. Indicator Manager components are:
 The Scripts Explorer
 The scripts view
 Tools Explorer window.
 The Properties window.

2. True. Storages are similar to files which can contain several scripts and/or
functions while groups are a visual grouping of scripts (only) in a tree like
structure.

Script Manager

 Page 28

2.4. Creating simple scripts

Introduction

This lesson shows you how you can add a new simple script.

Topics covered in this lesson:

- Create a simple script
- Debug a simple script
- Save a simple script

Lesson objectives:
By the end of this lesson, it is anticipated that you will be familiar with the process of
creating simple scripts in the DSS.

Lesson pre-requisites

You have to be familiar with scripts' basics and Iron Python (See the scripts' basics
and the IronPython primer sections for details) to take this lesson.

Script details

To make a script known to the DSS (i.e. its name appears within the explorer when
view by group), it must have a header defining its author, and description for simple
scripts and input (if with arguments) and output (if it returns a value) for complex
scripts. The header for a simple script is shown in Figure 7.

Figure 7: Script header

Script Manager

 Page 29

 Scripts that are added without such headers, they become only local to the storage
where they are saved and cannot be called directly from the DSS explorer. Scripts
within one storage can call each other even if they have no headers.

Script debugging

Script debugging can be helpful in understanding the execution of scripts as you
can run the script line by line and/or stop execution at selected locations
(breakpoints). This can also help to identify code flaws and errors. The DSS has got
its own script debugger which allows you to debug a script code.

Script Manager

 Page 30

Exercises

Adding, saving and running a simple script
1- Restore the 'TrainingDB' database
located in the folder
..\ScriptsExp\Data\Database. Then create
a connection and login to the restored
database (For details see the Database
Manager Utility and System Manager
training module). Following that, activate
and view the scripts explorer 'by storage'
and a new storage as shown in the
Activating the script Manager and How
scripts are stored in the DSS sections.

2- In the restored database, you will notice
that there are already created storages in
addition to the newly created storages that
is called 'NewStorage1'.

2- Right click the newly created storage
and select rename to rename to 'My
Storage'.

3- If the storage is not already opened in
the scripts view, right click it and select
'Edit storage'.

Script Manager

 Page 31

4- In the script view, right-click and select 'Insert' then 'Script without arguments' (Note

that you can alternatively do this by clicking the button on the toolbar).

This will insert template code (see below) for a simple script including a header. The
script does nothing.

5- Rename the script and then modify it to simply write the word “Hello” to the console.
to do this:
1- change the function name from 'ScriptName' to 'MyFirstScript'
2- change the line:

pass;
to
print 'Hello';

Script should look like the window below

Script Manager

 Page 32

6- Save the storage by clicking the on
the toolbar. A confirmation window
appears, showing what scripts are added
and which are removed (if any). Obviously
in this case only one script is added and
nothing was removed. Click 'Save' to
confirm. This will create the 'MyFirstScript'
as something the DSS knows (How can
you check that? Hint: Change the view to
'by Group').

7- Now it is time to run the script. In the
toolbar, there is an arrow followed by a list
box as shown next.

The list box allows you to select the script
that you need to run and the button
allows you to run this script.

So select the 'MyFirstScript' in the box and
then click the button.

8- The script debugger windows appears and the 'Hello' word appears in the 'Output
window' as shown below.

The script debugger has got the code in the top pane and the script output in the lower
output pane. The lower pane has also two other tabs that are called 'Watch' and Call
stack'. The 'Watch' windows allows you to watch the value of the script variables when
running in step by step or using break points. The 'Call stack' windows allows you to see
the current execution point of the the script and a list of functions and scripts called at
the point of execution.

Script Manager

 Page 33

Script Manager

 Page 34

Debugging a simple script
1- To debug a script code, you need to
establish stop location (i.e. breakpoints).
You can do this by either:
- Clicking the left border of the script view.
 This makes a breakpoint at this line
which will stop execution here.
- Moving the cursor to a code line 10 and
pressing F9. This will also establish a
breakpoint.

2- Run the script as done in the previous
exercise. Now the script debuger appears
but it stops at the breakpoint line as
indicated by the yellow color shown next.

3- Now look at the 'Output' window of the
debugger. What do you notice?

4- Move the the 'Call Stack' window of the
debugger. It shows the current execution
point which is line 10 in 'MyFirstScript' in
storage 'MyStorage'. Does that explain
why the 'Output' window of the debugger

Breakpoints can be removed/toggled in the same way they were created. The
 buttons in the toolbar allows you to delete all breakpoints or disable

them during execution respectively.

Script Manager

 Page 35

is empty.

5- Go back to the 'Output' tab and click

the button twice on the debugger
toolbar to contniue running the script. Now
the output window shows the word 'Hello'

Identifying script errors
1- In 'MyFirstScript', change the line:
print 'Hello'
To
rint 'Hello'
then try to save or run the script. What do
you notice?

2- An error message appears warning you
that the storage cannot be save as there
are some syntax errors. It also shows you
in which line and column the error is. Click
Ok.
3- Note also the red exclamation mark
that is added to the toolbar.

Hover the mouse over it and the error
message appears.

4- Correct the error by changing the line:
rint 'Hello'
To
print 'Hello'
Save the script.
Note that the red exclamation mark
disappeared.

Script Manager

 Page 36

Review Questions

1- What are the details that are needed for a complex script to be known to the
DSS?

2- Script debugging cannot be done within the DSS.
 True
 False

Script Manager

 Page 37

Answers

1- To make a complex script known to the DSS, it must have a header defining its
author, and description, input and output (if it returns a value).

2- False.

Script Manager

 Page 38

2.5. Handling changes and metadata

Introduction

This lesson introduces you to the handling of script changes and metadata within the
DSS.

Topics covered in this lesson:
 Examining the change log entries for a script
 Importing and editing a script metadata

Lesson objective:
 After completing this lesson, you will be able to:

 Understand the change log entries for each script
 Handle script metadata

Lesson pre-requisites

You have to be familiar with script manager basics (See the Script Manager basics
section for details) to take this lesson.

Script storage changes and metadata

One of the main challenges to data users is to keep a log of the changes made to a
data set and also save and keep its metadata updated. The DSS solves this
problem though an innovative solution. When a script storage is added to the Script
Manager, The DSS monitors all operations that is carried out on it noting the time
and date of this operation, and who carried it out. For example, when the storage is
added, an entry is added to the ‘Change log’ of this it to show the time and date of
adding this storage and also a description of the operation as shown in the below
figure. Not that this applies only to a whole storage not to individual
scripts/functions, therefore, you can see the change log and metadata tabs of
properties when viewing by storage only.

Script Manager

 Page 39

Figure 8: Change log example

Similarly, the DSS allows you to import storage metadata (if exists) through an xml
schema. Once this schema is within the DSS, it is saved and linked to all storages where
the metadata can be entered and updated as needed.

To define the metadata properties an agreement on a common set of metadata
properties to be used has to be made. At a technical level the metadata properties must
be expressed as an XML schema. An example of a simple schema is:

Script Manager

 Page 40

The above simple schema defines one property, identification, which is optional (i.e.
minoccurs=0) and consists of two (also optional) values, originator and publicationdate.
The first is a string, while the latter is a date-time.
Data types of properties in such a schema should be kept to standard types as defined
by http://www.w3.org/2001/XMLSchema

A more elaborate sample is this – but still constructed following the line from above:

<?xml version="1.0" encoding="utf-8"?>
<xs:schema attributeFormDefault="unqualified" elementFormDefault="qualified"
xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="metadata" >
 <xs:complexType>
 <xs:sequence>
 <xs:element name="identification" minOccurs="0" >
 <xs:complexType>
 <xs:sequence>
 <xs:element name="originator" type="xs:string" minOccurs="0" />
 <xs:element name="publicationdate" type="xs:dateTime" minOccurs="0" />
 <xs:element name="description" type="xs:string" minOccurs="0" />
 <xs:element name="timeperiodofdata" minOccurs="0" >
 <xs:complexType>
 <xs:sequence>
 <xs:element name="fromdate" type="xs:dateTime" minOccurs="0" />
 <xs:element name="todate" type="xs:dateTime" minOccurs="0" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="progress" type="xs:string" minOccurs="0" />
 <xs:element name="securityclassification" type="xs:string" minOccurs="0"
/>
 <xs:element name="securityhandlingdescription" type="xs:string"
minOccurs="0" />
 <xs:element name="contactperson" type="xs:decimal" minOccurs="0" />
 <xs:element name="contactorganization" type="xs:string" minOccurs="0" />
 <xs:element name="contactemail" type="xs:string" minOccurs="0" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="dataquality" minOccurs="0" >
 <xs:complexType>
 <xs:sequence>
 <xs:element name="logicalconsistencyreport" type="xs:string"
minOccurs="0" />
 <xs:element name="accuracyreport" type="xs:string" minOccurs="0" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="spatialreference" minOccurs="0" >
 <xs:complexType>
 <xs:sequence>
 <xs:element name="geographiccoordinatesystemname" type="xs:string"
minOccurs="0" />
 <xs:element name="latituderesolution" type="xs:decimal" minOccurs="0" />
 <xs:element name="longituderesolution" type="xs:decimal" minOccurs="0" />

Script Manager

 Page 41

 <xs:element name="geographiccoordinateunits" type="xs:string"
minOccurs="0" />
 <xs:element name="unitofdatavalues" type="xs:decimal" minOccurs="0" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

Note in addition to 'string' and 'datetime' data types, 'decimal' types are also used.
You are encouraged to read more about the xml schema in the 'Data Quality Assurance
Guideline: Data Processing, Quality Assurance and Metadata' report that was published
as part of the 'Data Compilation and Pilot Application of the Nile Basin Decision Support
System (NB-DSS)' study (Work Package 2: Stage 2).

Script Manager

 Page 42

Exercises

Handling time series change Log and metadata
1- Add a storage into the Script
Manager (See How scripts are
stored in the DSS section for
details). In the Properties Windows,
Select the ‘Change log entries’ tab.
You will notice that there is one entry
in the change log. The entry shows
that the storage was added to the
database. Double click the entry to
expand (or alternatively click the little
arrow to the left of the entry). You
can see more details such as the
activity type, date and time and user
who carried out the activity.

2- Rename the storage and check
the again the ‘Change log entries’
tab.

What did you notice? Write down
your observations. (Hint: compare
what you see against the next
figure).

Please also not how the entries are
ordered.

Script Manager

 Page 43

3- To handle metadata, a third tab
also exists for script storages which
stores its metadata. For the existing
storages no metadata fields exists.

4- If no metadata fields does not
exist, it can be imported using the
‘Metadata Schema Import’ tool under
the ‘Data tools’ category. To use the
tool, select ‘Metadata Schema
Import’ from the ‘Data tools’
category.

5- Once the tool is selected, its
properties appear in the ‘Properties’
window. Two parameters need to be
entered for this tool. The first is the
DSS entity type (i.e. script storage in
this case’) and the second is the ‘File
Path’ to the metadata schema file.
Select the
'NBDSS_Universal_v6.xsd' file that is
located in the
'..\ScriptsExp\Data\metadata' folder.

Script Manager

 Page 44

6- Click the button. The next
dialog box appears. Confirm that
both entity type and XSD file path are
correct and then click the

 button.

7- The metadata schema is imported
and loaded into the 'Meta data' tab.
Familiarize yourself with the content.
You may start adding data to the
different metadata fields.

Review Questions

1. Explain how storage metadata schema is imported and maintained with the DSS.
2. The DSS keeps track of all the operations made on a script.

 True
 False

3. When a script storage metadata schema is imported into the DSS, can this
schema be made available for time series data?
 True
 False

Script Manager

 Page 45

Answers

1. The DSS allows the users to import script storage metadata schema through an
xml schema using the ‘Metadata Schema Import’ tool. Once this schema is within
the DSS, it is saved and linked to the storage. Metadata can also be updated
directly by the users if needed.

2. False.
3. False. A specific entity type is specified for each metadata schema at the time it

is imported into the DSS database.

Script Manager

 Page 46

2.6. Creating complex scripts

Introduction

This lesson shows you how you can add a new complex script.

Topics covered in this lesson:

- Create a complex script
- Debug a complex script
- Save a complex script

Lesson objectives:
By the end of this lesson, it is anticipated that you will be familiar with the process of
creating complex scripts in the DSS.

Lesson pre-requisites

You have to be familiar with scripts' basics, simple scripts and Iron Python (See the
scripts' basics, simple scripts and IronPython primer sections for details) to take this
lesson.

Script arguments

The complex scripts are different from the simple ones as they have arguments. They
have to receive those arguments first before they run. They can receive them directly, or
from other simple or complex scripts. These arguments can be numbers, text or even a
DDS object (e.g. a time series or a scenario). In this section, creating a complex script
that takes two numbers as arguments will be described. In the advanced scripting
section, creating a complex script with a DSS object argument will be presented.

Script Manager

 Page 47

Exercises

Adding, saving and running a complex script
1-Select 'My Storage', right click it and
select 'Edit storage'.

2- In the script view, right-click and select 'Insert' then 'Script with arguments' (Note that

you can alternatively do this by clicking the button on the toolbar).

This will insert template code (see below) for a simple script including a header. The
script does nothing.

3- Rename the script and then modify it to simply sum two numbers. to do this:
 change the function name from 'ScriptName' to 'SumTwoNumbers'
 change the script body to the following:

"""
 <Script>
 <Author>admin</Author>
 <Description>Please enter script description here</Description>
 <Parameters>
 <Parameter name="param1" type="int">Parameter of type
int</Parameter>

Script Manager

 Page 48

 <Parameter name="param2" type="double">Parameter of type
double</Parameter>
 </Parameters>
 <ReturnValue type="double">Function returns object of type
double</ReturnValue>
 </Script>
 """
 # write your code here
 return param1 + param2
 pass;

Note the changes that were made to the arguments (i.e. parameters).

The script should look like the window below

Save the storage by clicking the on the toolbar and click save to confirm adding the
complex script.

4- Now modify the 'MyFirstScript' script to
call the 'SumTwoNumbers' script as
follows:
Add the following line
print SumTwoNumbers (2,3)

5- Run the 'MyFirstScript' script by
selecting it the 'MyFirstScript' in the box
and then click the button.

Script Manager

 Page 49

The script debugger windows appears and the 'Hello' word appears in the 'Output
window' as shown below followed by the sum of 2 and 3 (i.e. 5).

Script Manager

 Page 50

Debugging a complex script
1- Add two breakpoints as shown next.
The first is within the 'MyFirstScript' script
at the first print line. The second in within
the 'SumTwoNumbers' script at the return
line.

2- Run the 'MyFirstScript' script as done in
the previously. Now the script debuger
appears but it stops at the breakpoint line
as indicated by the yellow color shown
next.

3- Now look at the 'Output' window of the
debugger. What do you notice?

4- Move the the 'Call Stack' window of the
debugger. It shows the current execution
point which is line 10 in 'MyFirstScript' in
storage 'MyStorage'.

Script Manager

 Page 51

5- Now move to the 'Watch' window and a
add watch to inspect a variable. To do
this, write 'param1' in the input box and
click 'Add watch'. A line is added in the
list.

Note that the Watch window shows an
exception because param1 is not known
in the 'MyFirstScript' and cannot therefore
be evaluated.

5- Go back to the 'Output' window and

click the button on the debugger
toolbar (or press F10) to execute the
current line and move forward to next line.
Now the output window shows the word
'Hello'

6- Now click the on the debugger
toolbar (or press F5) to continue the
execution until the next breakpoint.

Note that the following:
- The yellow color moved to the return line
in the 'SumTwoNumbers' script indicating
the current statement.
- The green color indicating the active
statement in 'MyFirstScript' calling
'SumTwoNumbers'

7- Now move to the 'Call Stack' window. Where is the currect excution point? (Hint: the
line at the top of the call stack shows the current execution point)

Script Manager

 Page 52

8- Now move to the 'Watch' window. Since we are within the 'SumTwoNumbers' Script,
the debugger was able to show the value of param1 which was passed from the
'MyFirstScript' (i.e. 2).

9- Now move back to the 'Output' windows and window and click the button on the
debugger toolbar (or press F10) twice. Now the sum of the two numbers is printed and
the execution is back to 'MyFirstScript'

Check the 'Call stack' and 'Watch' windows and writedown your observations then click

Script Manager

 Page 53

the button to finish the sript run.

Review Questions

1. Give three examples of complex script arguments?
2. DSS objects cannot be passed to a complex script.

 True
 False

Script Manager

 Page 54

Answers

1. Complex script arguments can be:
- Numbers
- Text
- DSS objects

2. False (they can be passed).

Script Manager

 Page 55

2.7. Predefined scripts in the DSS

Introduction

This lesson gives an overview of the DSS predefined scripts. It also shows you how you
can expand those predefined scripts.

Topics covered in this lesson:
 Who developed this set of predefined scripts
 Definition of each script showing its function.
 Expanding the predefined scripts in the DSS.

Lesson objective:
 After completing this lesson, you will be familiar with the predefined scripts in the
DSS and you will know how to expand those scripts

Lesson pre-requisites

You have to be familiar with scripts basics (See the indicators' basics section for
details) to take this lesson.

Who developed this set of predefined scripts

During the development of the Nile basin DSS, a number of consultation meetings
and workshops were held to identify the key indicators that stakeholders in the Nile
Basin are most interested in. This was part of a consultancy called 'Data
Compilation and Pilot Application of the Nile Basin Decision Support System'.
Based upon the discussions between the stakeholders, the consultant identified a
number of key indicators that can be used in the DSS to evaluate scenarios and
undertake MCA and CBA. These indicators were divided into the following three
categories:

- Social indicators
- Environmental indicators
- Economic indicators

A scripting library was developed for the calculation of the above indicators. The
scripts are organized into the following eight storages:

Script Manager

 Page 56

 BaseUtils: Generic scripts for common mathematical calculations,
interpolation, lookups, etc.

 SpreadsheetUtils: Scripts for accessing DSS spreadsheets and retrieving
arrays and/or lookup values from the spreadsheets associated with the
developed indicators.

 IndicatorUtils: Supporting scripts for calculating environmental, social and
economic indicators and calculation of ecologically relevant time series
statistics.

 NBIScripts: Scripts for calculation of food production indicators (Developed
by NBI)

 RasterUtils: Scripts for raster processing, mainly for flood damage
calculations.

 Environmental Indicators: Scripts for calculation of environmental
indicators.

 Social Indicators: Scripts for calculation of social indicators.
 Economic Indicators Scripts for calculation of economic indicators.

Figure 9 shows the dependencies between the above script storages.

Figure 9: Script Storages and Dependencies

Script Manager

 Page 57

In the following section, definition of the scripts that are used to calculate the DDS
indicators is given. For a full reference to the scripts within the above storages, you
are referred to the ???? report. The storages are self-documented using
comments.

Script Manager

 Page 58

Scripts Definition

In this section, for each predefined script, the following is presented:
1. script sub-category
2. script name
3. a description of what the script does

Social Indicators

Sub-category NB-DSS Script name Description

Water Availability SO1_WaterAvailability Calculates the change in availability of water for riparian users: domestic consumption,
subsistence agriculture and livestock

Community Health
and Safety

SO2_MalariaEndemicity Calculates the susceptibility of irrigation scheme areas to malaria based on WHO malaria
incidence map for Africa

SO3_PestDiseasePrevalence Calculates the prevalence of diseases resulting from pest species

SO4_UrbanPollution Calculates the water pollution downstream major urban areas

SO5_HouseholdsFlooded Calculates the No households within the 100 year flood line

SO6_DrowningRisk Calculates the drowning risk due to conveyance of water in an open canal

Food security and
Livelihoods

SO7_FormalIrrigation Calculates the footprint area due to establishment of new irrigation schemes

SO81_RecessionAgricFloodPlain Calculates the impact on Recession agriculture due to floodplain inundation

SO82_RecessionAgricBank Calculates the impact on Recession agriculture due bank instability

SO91_FishProductionDam Calculates the change in fish productivity in a dam, lake, or wetland

Script Manager

 Page 59

Sub-category NB-DSS Script name Description

SO92_FishProductionRiver Calculates the change in fish productivity along a river reach

SO10_ProductiveLandUse Calculates the productive land use for crops, grazing inundated by dam or lost due to
establishment of an irrigation scheme or a canal

SO11_LossNaturalResources Calculates the change loss of access to natural resources due to inundation by dam or
establishment of an irrigation scheme or a canal

Displacement
SO12_PhysicalDisplacement Calculates the physical displacement of population due to inundation by a dam, establishment of

an irrigation scheme or construction of a canal

SO13_EconomicDisplacement Calculates the economic displacement due to disruption of access to natural resources (cattle,
people, wildlife) as a result of a canal and/or a dam construction

Script Manager

 Page 60

Environmental Indicators
Sub-Category NB-DSS Script Name Description

Footprint Areas

EN1_EnvSensitiveAreas
Calculates the extent of Environmentally Sensitive Area within a dam, irrigation scheme or canal
footprint

EN11_EnvSensitiveRating
Calculates the impact rating on environmentally sensitive area within a dam, irrigation scheme or
canal footprint

EN12_HotspotRating
Determines the wetlands of international importance (Ramsar Sites) and Important Bird Areas
(IBAs) that fall outside of protected areas, but within primary impact zones.

EN2_Carbon Calculates the area of woody biomass and biomass carbon within dam footprint

EN3_FishProduction Estimates fish production from a dam, lake or a wetland

Downstream Areas

EN4_FloodPlainInundation Calculates the floodplain area inundated compared to a baseline

EN42_WetlandArea Calculates the wetland area inundated compared to a baseline

EN5_EcoStressRating
Determines ecological stress rating from changes in key flow components and flow variability
compared to baseline.

EN6_WetDuration Calculates the wet season duration based on median monthly flows

EN7_BlackFlyRating
Determines black fly rating from HP operation, changes in low flows and variability compared to
baseline.

EN8_BankStability
Calculates bank stability rating downstream of impoundment based on standard deviation of
flows and predefined sinuosity

EN9_RecoveryDistance Estimates recovery distance based on median discharge from impoundment and distance to
downstream tributary

EN10_WetSeasonShift Calculates number of weeks delay in the onset of wet season compared to a baseline

Script Manager

 Page 61

Water Quality
EN11_PhytoPlankton Estimated the phytoplankton growth potential based on empirical relationship with retention

time

EN12_AquaticMacrophyte Estimates aquatic macrophyte growth potential based on empirical relationship with nitrate
concentration in irrigation scheme return flow

Script Manager

 Page 62

Economic Indicators
Category NB-DSS Script Name Description

Navigation EC1_Navigation Calculates number of days above baseline flow threshold or change relative to baseline

Energy
EC21_AverageEnergy Calculates average energy generated at specific hydropower node over a specified period

EC22_AverageEnergy_System Calculates system wide average annual energy

Water conservation
EC31_EvapLoss Calculates average annual evaporation from a dam, a wetland or a lake

EC32_EvapLoss_System Calculates system wide average annual evaporation

Floods Flood Damage Calculates flood damage based on damage-depth relationships for different land use types

Food production

EC51_FoodProductionSingle Calculates food production of new irrigation schemes

EC51_FoodProduction
Calculates the potential reduction in crop yield of existing irrigation schemes due to upstream
developments

EC51_ProductionIncomeSingle Calculates actual crop income of new irrigation schemes

EC51_ProductionIncome Calculates change in crop income of existing irrigation schemes due to upstream developments

Script Manager

 Page 63

Expanding the DSS predefined scripts

To expand the DSS predefined set of scripts, you have the following two options:
 Add a new script: In this case you need to do the following:

- Define what the script will do
- Identify the data that is needed for the script. This can be external

(i.e. data does not exist in the DSS but can be organized in
spreadsheets and imported into the DSS) or internal (e.g.
generated by DSS Modeling tools).

- Add the script into a temporary storage within the Script Manager
- code the script to using Iron Python
- Test the script to ensure it works properly.
- If testing is successful add the new script into a storage that is

already created into the DSS or if does not fit with any of them
create a new storage for it.

- Ensure the header of the script is updated with a good description.
 Modify an existing script: This option might be needed if you think that the

existing script code needs to be improved. In this case you need to do the
following:

- Identify what needs to be changed with the script.
- Identify if more data that is needed for the script.
- Modify the existing script3 code.
- Test the script to ensure it works properly.
- If testing is successful add to the modified script into the same

storage.
- Ensure your modifications are added to the header of the script.

Review Questions

1. What are the main predefined script storages in the DSS?
2. The DSS predefined set of indicators cannot be expanded.

 True
 False

3 It is always advisable to keep a copy of an existing script before modifying.

Script Manager

 Page 64

Answers

1. The predefined indicators are divided into the following three main categories:
 BaseUtils.
 SpreadsheetUtils.
 IndicatorUtils.
 NBIScripts.
 RasterUtils.
 Environmental Indicators.
 Social Indicators.
 Economic Indicators Scripts.

2. False (it can be expanded).

Script Manager

 Page 65

2.8. Advanced scripting

Introduction

This lesson introduces you to two advanced scripting topics, namely, using the
DSS Application Programming Interface (API) in scripts (including accessing
DSS objects such as time series, GIS layers, scenarios and spreadsheets) and
using DSS tools in a script.

Topics covered in this lesson:

- What is the DSS Application Programming Interface (API)
- Using the API to access the DSS objects
- Use the DSS tools in scripts

Lesson objectives:
By the end of this lesson, it is anticipated that you will be familiar with the DSS
API and how you can use it to access DSS objects and tools in a script.

Lesson pre-requisites

You have to be familiar with scripts' basics, complex scripts and Iron Python
(See the scripts' basics, complex scripts and IronPython primer sections for
details) to take this lesson.

What is an Application Programming Interface (API)?

An application programming interface (API) is a set of routines, protocols, and tools
for building software applications. An API expresses a software component in terms
of its operations, inputs, outputs, and underlying types. An API defines functionalities
that are independent of their respective implementations, which allows definitions
and implementations to vary without compromising each other. A good API makes it
easier to develop a program by providing all the building blocks. A programmer then
puts the blocks together.

What is the DSS (API)?

Based on the above definition, The DSS API a set of functions and procedures that
allow the creation of applications (e.g. scripts) which access the features or data of
the DSS. For example, imagine you need to get time series data from the Timeseries

Script Manager

 Page 66

Manger to calculate its average value. The DSS API should have the functionality
that would allow you using Iron Python to do this.

Script Manager

 Page 67

Exercises

Accessing DSS objects using Iron Python(time series object)
1-Select 'My Storage', right click it and
select 'Edit storage'.

2- In the script view, right-click and select 'Insert' then 'Script with arguments' (Note that

you can alternatively do this by clicking the button on the toolbar).

This will insert template code (see below) for a simple script including a header. The
script does nothing.

3- Rename the script and then modify it to calculate the average of a time series. to do
this:

 change the function name from 'ScriptName' to 'TimeseriesAverage'
 change the script body to the following:

"""
 <Script>
 <Author>admin</Author>
 <Description>Please enter script description here</Description>
 <Parameters>
 <Parameter name="ts" type="IDataSeries">Parameter of
IDataSeries</Parameter>
 </Parameters>
 <ReturnValue type="double">Function returns the average of the

Script Manager

 Page 68

ts</ReturnValue>
 </Script>
 """
 return ts.Statistics.Average
 pass;

Note the changes that was made to the arguments.

Script should look like the window below

This script takes one parameter which is a time series. It then uses the Statitics tools of
the time series to calculate the average.

Save the storage by clicking the on the toolbar and click save to confirm adding the
complex script.

4- Now we need to modify the
'MyFirstScript' script to call the
'TimeseriesAverage' script. But to do this
we need to have an access to at time
series. To do this place the cursor below
the last line in the 'MyFirstScript'. right
click and select insert snippet.

Script Manager

 Page 69

8- The next window appears. It has a
slection of code sinppets that can be
inserted directely into a script. In this case
select the code the gets a time series.

9- Examine the lines that were inserted
into the script. First an object called 'app'
was used to get access to the time series
manager (the 'tsMgr’ variable). Then, the
manager is used to get the Time series
data (the 'ts’).

10- Before running the script, you need to
define the path to the time series. To do
this activate the Timeseries manager and
right click a time series and copy its path
using the 'Copy full path' option.

11- Modify the code as shown next by
pasting the full path you copied above and
adding a (') before and after the path so it
is read as a text.

12- Add the following line to call the
'TimeseriesAverage' script:
print TimeseriesAverage (ts)

Script Manager

 Page 70

13- Run the 'MyFirstScript' script by
selecting it the 'MyFirstScript' in the box
and then click the button.

14- The script debugger windows appears and the 'Hello' word appears in the 'Output
window' as shown below followed by the sum of 2 and 3 (i.e. 5) and then the average
value of the time series.

15- Use the code sinnpets to access other DSS objects such as a GIS layer.

Script Manager

 Page 71

Accessing tools using a script

Review Questions

1. What is an API?

Script Manager

 Page 72

Answers

1. An application programming interface (API) is a set of routines, protocols, and
tools for building software applications

Script Manager

 Page 73

3. References

- Nile Basin Decision Support System help file (DSS Ver. 2.0)
- Nile Basin Decision Support training material (developed in 2013 and 2014)
- DHI training material for the Nile Basin Decision Support (developed in 2012)
- WP2 Report: NB-DSS WP2 Stage 2 'Data Quality Assurance Guideline: Data

Processing, Quality Assurance and Metadata' (2012)
- WP2 Report: NB-DSS WP2 Stage 2 'Guideline for the Evaluation of Water

Management Interventions' (2012)

